Preparation of Titanium Phosphate as Solid Electrolyte Material for Secondary Battery
Abstract
Keywords
Full Text:
PDFReferences
P. G. Balakrishnan, R. Ramesh, and T. Prem Kumar, “Safety mechanisms in lithium-ion batteries,” Journal of Power Sources, vol. 155, no. 2. pp. 401–414, 2006.
Z. J. Zhang, P. Ramadass, and W. Fang, “Safety of Lithium-Ion Batteries,” in Lithium-Ion Batteries: Advances and Applications, 2014, pp. 409–435.
Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, “Thermal runaway caused fire and explosion of lithium ion battery,” Journal of Power Sources, vol. 208. pp. 210–224, 2012.
A. Manthiram, X. Yu, and S. Wang, “Lithium battery chemistries enabled by solid-state electrolytes,” Nature Reviews Materials, vol. 2, no. 4. 2017.
J. Steiger, D. Kramer, and R. Mönig, “Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium,” J. Power Sources, vol. 261, pp. 112–119, 2014.
E. Yulianti, R. D. Saputri, S. Sudaryanto, H. Jodi, and R. Salam, “Pembuatan Bahan Polimer Elektrolit Padat Berbasis Nanokomposit Kitosan Montmorillonite untuk Aplikasi Baterai,” J. Kim. dan Kemasan, vol. 35, no. 2, p. 77, 2013.
Menteri Perindustrian, No Title. Peraturan Menteri, 2011, p. 21 hal.
F. Nabeel, D. D. Warnana, and A. S. Bahri, “Analisa Sebaran Fosfat dengan Menggunakan Metode Geolistrik Konfigurasi Wenner-Schlumberger : Studi Kasus Saronggi, Madura,” J. Sains dan Seni Pomits, vol. 2, no. 1, pp. 2337–3520, 2013.
B. Setiawan, “Ekstraksi TiO2 Anatase dari Ilmenit Bangka Melalui Senyawa antara Amonium Peroxo Titanat dan Uji Awal Fotoreaktivitasnya (Skripsi),” Universitas Indonesia, 2012.
H. Aman, Sunarno, Fuad Nugroho, “Kinetika Reaksi Hidrolisa TiOSO 4 menjadi TiO(OH)2,” in Seminar Nasional Teknik Kimia Oleo & Petrokimia Indonesia, 2008, pp. 1–6.
Suhanda and R. Septawandar, “Isolasi Zirkonia dan Silika dari
Pasir Zirkon Teknis dengan Metode Modifikasi Fasa,” J. Keramik dan Gelas Indones., vol. 22, no. 1, pp. 22–34, 2013.
M. Chintapalli et al., “Relationship between Conductivity, Ion Diffusion, and Transference Number in Perfluoropolyether Electrolytes,” Macromolecules, vol. 49, no. 9, pp. 3508–3515, 2016.
H. Xu, S. Zhang, S. M. Anlage, L. Hu, and G. Grüner, “Frequency- and electric-field-dependent conductivity of single-walled carbon nanotube networks of varying density,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 77, no. 7, 2008.
H. S. Kuncoro, M. Sakaue, H. Nakanishi, H. Kasai, and H. K. Dipojono, “First-principles investigation on ionization strength, volume expansion, and water rotational rigidity of small water cluster systems formed around sodium(I), calcium(II), and iron(II) ions,” J. Phys. Soc. Japan, vol. 80, no. 2, 2011.
X. Wang et al., “Novel Flower-like Titanium Phosphate Microstructures and Their Application in Lead Ion Removal From Drinking Water,” J. Mater. Chem. A, vol. 2, no. 19, pp. 6718–6722, 2014.
S. Breuer et al., “Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3,” J. Mater. Chem. A, vol. 3, no. 42, pp. 21343–21350, 2015.
DOI: http://dx.doi.org/10.32537/jkgi.v27i1.3956
Refbacks
- There are currently no refbacks.
JKGI Google Scholar Link
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial-BerbagiSerupa 4.0 Internasional.