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Abstract. Polylactic acid (PLA) material has the potential to be applied in various industrial fields, but this material has 
shortcomings in terms of mechanical properties, especially mechanical strength, due to brittleness nature of PLA. The 
manufacture of PLA composite material with the addition of natural fibers as a reinforcing phase is one of the methods to 
increase the impact strength and maintain the biodegradable properties of the material. However, in theory, there are many 
factors that affect the mechanical properties of composite materials, thus making the mechanical properties of composites 
more complex than monolithic materials. The mechanical properties of these composite materials can be predicted using 
deep learning by paying attention to the relationship between factors, and between factors and their mechanical properties. 
This relationship has an important role in creating a predictive model with good accuracy. Therefore, correlation analysis 
is an important thing to do. Correlation analysis was applied using Python programming language to determine the 
relationship between the impact strength of natural fiber-reinforced PLA biocomposites with its feature information: 
chemical composition, density, dimensions, surface chemical treatment of natural fibers, matrix-reinforcement volume 
fraction, and the type of processing used to manufacture the material.  
Keywords: PLA; composite; Natural fiber; deep learning; biodegradable. 

 

INTRODUCTION 

Material is something that has been integrated with all lines of life, where almost every activity involves the use 
of materials (Hopewell et al., 2009). Therefore, research in materials science continues to develop along with 
technological developments. Looking at the current environmental conditions, environmental damage becomes a 
major issue every year, one of which is due to the large number of non-environmental-friendly materials that cannot 
be degraded naturally. Therefore, in this era, research in materials science does not only focus on the mechanical 
properties of materials but also considers the effects that materials will have on the environment (Kumar et al., 2003). 

According to this situation, the polymer is one of the materials that can overcome this problem. Besides its 
advantages, several types of polymer materials can be degraded naturally and are environmentally friendly. This type 
of polymer is a polymer that comes from nature, such as animals or plants. The natural polymer material that is 
currently a concern in the research of environmentally friendly materials is polylactic acid (PLA) (Fatriansyah et al., 
2022; and Rahmat et al., 2020). PLA is a natural polymer material that has the potential to be applied in various 
applications because of its unique and superior mechanical properties. PLA has a relatively high tensile strength, is 
light, biodegradable, biocompatible, and has good processing ability, where PLA can be processed using standard 
plastic manufacture in general (Rashdan et al., 2016). Besides these advantages, PLA has poor toughness and impact 
strength (Rasal et al., 2010). Therefore, it is necessary to modify PLA to overcome these shortcomings by making 
PLA into a composite material by mixing other materials as reinforcement (Fatriansyah et al., 2022). To maintain the 
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environmentally friendly or biodegradable properties of PLA composite materials, support is used, which can also be 
naturally degraded.  

This PLA biocomposite material has the potential to be applied in various fields of application, where each 
application demands different specifications of mechanical properties. Deep learning is one of the technologies that 
can predict biocomposites’ mechanical properties based on factors that affect them (Rahman et al., 2021; Fathi et al., 
2020; and Rong et al., 2019). 

But, building a deep learning predictive model from many factors or features that affect the output will be 
challenging (Arunika et al., 2022). Therefore, it is necessary to know the factors that influence its mechanical 
properties and how they affect the mechanical properties to produce biocomposite materials with the desired 
mechanical properties from an excellent accurate deep learning model. This relationship can be determined 
traditionally through testing the composite materials by varying the materials and processing parameters, but this is 
difficult to do and will take a long time; moreover, many factors affect the mechanical properties of biocomposites 
(Senthil Muthu Kumar et al., 2020; and Muthuraj et al., 2016). These relationships are non-linear, so the process 
becomes ineffective. Correlation analysis using Python programming language is an effective and fast method to know 
how features correlate with each other, how features correlate with the output, and how strong the correlation is. With 
this method, it will be easier for us to make feature selection and determine the most valuable features, resulting in 
good model performance. 

DATA AND METHODS 

Data used for this research are secondary data collected from previous research about the influence of natural 
fiber chemical composition, density, dimension, and chemical surface modification, as well as PLA matrix-natural 
fiber reinforcement volume fraction and PLA biocomposites manufacturing method. Information collected for this 
research are: cellulose, hemicellulose, lignin, pectin, wax, and moisture content of the natural fiber, fiber density, fiber 
diameter, fiber surface modification (treated or untreated), fiber content in composites, composites manufacturing 
method (injection or compression molding), as well as mechanical properties of the, resulted from PLA composites 
such as impact strength. Impact strength is defined as the resistance of a material to fracture by a blow, expressed in 
terms of the amount of energy absorbed by the material before fracture. 

Twenty-seven data used in this study have been collected based on the above information. Before the deep 
learning modeling stage, these features and output would be applied to correlation analysis to get the most suitable 
features as the input. The statistical information of the features is given in TABLE 1. At the same time, the output of 
the data, which is impact strength, has a minimum value of 5.00 KJ/m2, a maximum value of 56.00 KJ/m2, and a mean 
of 19.86 KJ/m2, and a standard deviation of 11.97 KJ/m2. 

TABLE 1. Features statistical information of 27 data points 

Features Min Max Mean 
Std 
Dev 

Fiber 
Cellulose 

(%) 
34.50 89.00 64.98 14.07 

Fiber 
Hemicellulose 

(%) 
4.00 21.00 16.05 5.19 

Fiber Lignin 
(%) 

0.75 26.00 8.38 8.69 

Fiber Pectin 
(%) 

0.20 6.00 1.97 1.59 

Fiber Wax 
(%) 

0.00 0.60 0.10 0.22 

 

Features Min Max Mean 
Std 
Dev 

Fiber Moisture 
(%) 

0.00 12.60 7.10 4.89 

Fiber 
Treatment 

- - - - 

Fiber Content 
(%) 

5.00 40.00 25.00 11.09 

Fiber Diameter 
(μm) 

10.50 179.0 52.09 53.79 

Fiber Density 
(g/cm3) 

1.13 1.56 1.41 14.00 

Processing 
Method 

- - - - 
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RESULTS AND DISCUSSIONS 

The correlation analysis process uses the help of Google Colab, which is a coding environment with Python as 
the programming language to perform various data manipulation, analysis, and visualization. Before analyzing the 
data, data reading, cleaning, and exploratory data analysis were conducted first using the panda’s library to produce 
clean data and to know the characteristics of the data. 

After getting clean data and doing exploratory data analysis, correlation analysis was then conducted to know 
how strong the correlations are between each feature, as well as between features and the output. The correlation 
coefficient will describe whether a feature is highly related or not with other features or to the output. The magnitude 
of the correlation coefficient is expressed through the following equation : 

𝑟(௫,௬) =  
ை(ೣ,)

௦ೣ௦
      (1) 

𝐶𝑂𝑉(௫,௬) =  
∑ (௫ି௫̅)(௬ି௬ത)

సభ

ିଵ
     (2) 

where COV(x,y) is the covariance of the variables x and y, n is a number of data points, �̅� is mean of the variable x, ȳ is 
mean of the variable y, r(x,y) is the correlation of the variables x and y, sx is the standard deviation of the variable x, 
and sy is the standard deviation of the variable y. (Sands, 1977) 

Based on the equation above, the resulting correlation coefficient has a value that falls in the range of -1 to 1. If 
the correlation coefficient is 1, the variables have a perfect positive correlation, which means that the variables move 
proportionally in the same direction. If the correlation coefficient is 0, it means that there is no relationship exist 
between the variables. On the other hand, if the correlation coefficient is -1, the variables have a perfect negative 
correlation (inversely correlated), which means if one variable increases, the other variable decreases proportionally. 
(Schober et al., 2018) 

The correlation analysis conducted between each feature is shown in FIGURE 1. There are some features that are 
highly correlated with each other, such as cellulose and hemicellulose, as well as cellulose and lignin. In order to get 
a good deep learning regression model performance, one of the highly correlated features must be removed. 

 

FIGURE 1. Correlation coefficient between each feature 
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The correlation between features and the output (impact strength) is shown in FIGURE 2. Based on the plot, there 
are some features that have a correlation coefficient of almost zero. They are processing method with correlation 
coefficient of -0.066, fiber surface chemical treatment with correlation coefficient of 0.055, cellulose with correlation 
coefficient of 0.086, and fiber density with correlation coefficient of 0.098. It means that there is almost no relationship 
between those features and the output. 

 

FIGURE 2. Correlation coefficient between features and the output 

CONCLUSION 

Based on correlation analysis that have been conducted, it shows that cellulose has high correlation with 
hemicellulose and lignin, as well as has low correlation with impact strength as the output. Therefore, cellulose has to 
be removed to increase deep learning model performance. This also applies to other features such as processing 
method, fiber surface chemical treatment, and fiber density, as they also have low correlation coefficient with impact 
strength as the output. Thus, there are 7 features that been used in this research to make a good deep learning model 
performance which are: hemicellulose, lignin, pectin, wax, and moisture content, as well as fiber diameter and fiber 
content. 
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