RANCANGAN SISTEM EKSTRAKSI PADA GRID ELEKTRODA GENERATOR PLASMA UNTUK IRADIATOR ELEKTRON PULSA

Agus Purwadi, Bambang Siswanto, Lely Susita R.M., Suprapto, Anjar Anggraini H., Ihwanul Azis

Pusat Sains dan Teknologi Akselerator – BATAN Jl. Babarsari POB 6101 Ykbb, Telp. (0274) 488435, Yogyakarta 55281 email: agus.p@batan.go.id

ABSTRAK

RANCANGAN SISTEM EKSTRAKSI PADA GRID ELEKTRODA GENERATOR PLASMA UNTUK IRADIATOR ELEKTRON PULSA. Telah dilakukan rancangan dan studi ekstraksi elektron khususnya untuk perolehan arus ekstraksi elektron melalui grid pada Bejana Generator Plasma (BGP) akibat adanya tegangan ekstraksi U_a. Elektron pada permukaan plasma teremisi ke daerah percepatan melalui jendela emisi dan selanjutnya diekstraksi melalui jendela foil ke daerah atmosfir oleh tegangan ekstraksi untuk diaplikasikan ke suatu target. Tegangan ekstraksi terpasang U_a pada perangkat Iradiator Elektron Pulsa (IEP) mempengaruhi proses pembentukan besar arus dan tenaga berkas ekstraksi elektron I_e sedang dimensi BGP berpengaruh terhadap besar arus emisi elektron termal Ie0. Telah ditentukan bentuk dan dimensi BGP penghasil arus emisi elektron atas dasar besar arus lucutan busur plasma yang dikehendaki pada kerapatan plasma n_e tertentu. Dari hasil perhitungan untuk $n_e = 78 \times 10^{10}$ cm⁻³ dan arus lucutan busur $I_d = 80$ A (lebar pulsa $\tau = 100 \mu s$) digunakan BGP ukuran (80 x 20 x 40) cm³. Jendela emisi seluas (65 x 15) cm² di permukaan BGP ditutup dengan lembaran grid (kassa) dari bahan Stainless Steel(SS) bentuk bujur sangkar dengan jarak antar lubang grid 0,25 mm. Besar arus Ie disamping bergantung pada parameter plasma juga bergantung pada ukuran lubang grid. Bentuk dan ukuran lubang grid optimum BGP adalah bujur sangkar dengan rusuk $p \approx 0.50$ mm dengan besar parameter plasma optimum (kerapatan $n_e = 10^{16}$ m⁻³ dan suhu plasma $T_e = 6 \text{ eV}$). Dari hasil eksperimen awal diperoleh nilai efisiensi ekstraksi elektron $\alpha = 37,25$ % pada tegangan ekstraksi V = 3 kV.

Kata kunci: plasma, rapat arus ekstraksi/emisi elektron, iradiator elektron pulsa

ABSTRACT

DESIGN OF EXTRACTION SYSTEM ON GRID OF PLASMA GENERATOR ELECTRODE FOR PULSED ELECTRON IRRADIATOR. It has been carried out design and study of elektron extraction particularly for obtaining the electron extraction current via grid on the Plasma Generator Chamber (PGC) caused by the existence of extraction voltage U_a. Electrons of plasma surface emitted to acceleration region through emission window and then extracted acceleration by extraction voltage U_a through foil window to atmospheric region for being applied to any target. Applied extraction voltage U_a on PEI device influences the forming and energy value of electron extraction current I_e then the PGC dimension influences the product of thermal electron emission current I_{e0}. It has been determinated the PGC geometry and dimension of producing electron extraction current based on arc discharge plasma current to desire on any plasma density. From the calculation yield for the value of plasma density $n_e = 78 \times 10^{10}$ cm⁻³ and the arc discharge current $I_d = 80$ A (pulse width $\tau = 100 \mu s$) used the PGC size of (80 x 20 x 40) cm³. Emission window area of (65 x 15) cm² located on the low part surface of PGC is covered by a grid sheet made of stainless steel of rectangular shape and the distance of one grid hole to anothers is 0,25 mm each others. Current value of I_e beside depens on plasma parameters also depens on the size of grid holes. The optimum of geometry and size is rectangular with its side size of $p \approx 0.50$ mm with the plasma parameters optimum (density value $n_e = 10^{16} \text{ m}^{-3}$ and electron temperature $T_e = 6$ eV). From the initial experiment yields obtained that the electron extraction efficiency value $\alpha = 37.25$ % on extraction voltage V = 3 kV.

Keywords: plasma, electron emission/extraction current density, pulsed electron irradiator

PENDAHULUAN

Pusat Sains dan Teknologi Akselerator (PSTA) BATAN telah mencoba mengembangkan MBE dengan sumber elektron berbasis katoda plasma dengan keluaran berkas elektron bentuk pulsa yang disebut perangkat Iradiator Elektron Pulsa (IEP). Perangkat *IEP* akan lebih menguntungkan dari pada jenis Mesin Berkas Elektron (MBE) karena MBE menggunakan sumber elektron jenis filamen, tabung akselerator, sistem pemfokus dan sistem pemayar (*scanning system*) berkas sehingga menimbulkan permasalahan, diantaranya harganya mahal, bentuknya cukup besar dan kurang kompak, serta berkas elektron yang mengenai permukaan bahan target masih kurang seragam [1].

Perangkat IEP merupakan suatu generator berkas elektron pulsa dimana berkas elektron terbentuk oleh emisi atau ekstraksi elektron dari permukaan plasma di dalam Bejana Generator Plasma (BGP). Plasma elektron diemisikan keluar menuju daerah pemercepat melalui lubang grid (sistem ekstraksi) yang terpasang pada dinding BGP. Pada daerah pemercepat berkas elektron dipercepat hingga kecepatan termal oleh medan Coulomb menggunakan tegangan tinggi eksternal yang selanjutnya diekstrak menuju target melewati jendela foil pada dinding bejana vakum IEP. Perangkat IEP dengan keluaran berkas elektron berpenampang luas dan berarus besar akan sangat bermanfaat untuk diaplikasikan pada permukaan bahan datar yang luas. Perangkat IEP sangat menjanjikan untuk digunakan dalam berbagai industri antara lain dalam bidang kesehatan untuk industri pengolahan bahan yang mengandung racun (lateks karet alam), modifikasi permukaan pada industri semikonduktor dan polimer, serta industri pangan untuk pasteurisasi tanpa merusak tekstur dan nutrisi, juga untuk netralisasi limbah [2-3].

Modul BGP dalam perangkat IEP diharapkan dapat menghasilkan lucutan busur plasma dalam orde puluhan hingga ratusan amper (A), maka tipe lucutan yang cocok adalah hanya dengan lucutan tipe arc discharge (lucutan busur) [4]. Sistem yang mampu menghasilkan elektron yang efisien, ekstraksinya stabil serta distribusi kerapatan elektron pada berkas bisa optimum adalah hanya dengan penggunaan sistem ekstraksi yakni dengan cara memasang grid sebagai anoda emitor pada dinding BGP [5]. Dimensi dari anoda emitor/ekstraktor bejana IEP dan tegangan ekstraksi harus disesuaikan dengan ukuran dan bentuk BGP, karena unsur parameter tersebut berhubungan erat dengan syarat dapat atau tidaknya elektron diekstraksi dari BGP dengan optimum [6].

Kegiatan rancang bangun perangkat IEP ini diawali dengan desain BGP untuk arus lucutan busur plasma $I_d = 80$ A (lebar pulsa $\tau = 100$ µs) dengan kerapatan plasma/elektron dalam kisaran $n_e = 10^{10}$ cm⁻³, dimana nilai kerapatan optimum dalam kisaran $n_e = (10^9 - 10^{12}) \text{ cm}^{-3}[7]$. Penentuan parameter arus lucutan I_d dan kerapatan elektron n_e dipilih atas dasar dari hasil studi literatur, eksperimen awal dan kesepakatan dalam rapat koordinasi rutin yang telah dilakukan di kelompok litbang SEKP, PSTA BATAN, Yogyakarta. Tujuan dilakukannya rancangan sistem ekstraksi pada grid elektroda generator plasma untuk perangkat IEP ini adalah agar arus ekstraksi elektron I_e pada perangkat IEP dapat diperoleh dengan kuantitas dan kualitas yang lebih maksimum.

Perangkat IEP terdiri dari dua buah bejana utama yakni bejana IEP dan BGP, skematik sederhananya adalah seperti ditunjukkan pada Gambar 1[8]. Bejana IEP yang merupakan ruang vakum tinggi terdiri dari BGP dan tegangan tinggi ekstraksi elektron. Berkas elektron yang teremisi dipercepat dari jendela emisi (pada dinding BGP) menuju ke jendela foil (pada dinding bejana IEP). tempat terjadinya plasma terdiri BGP dari komponen-komponen elektroda ignitor, isolator, elektroda, katoda dan jendela emisi, sedang IEP terdiri dari BGP yang dilengkapi dengan kabel sumber daya elektroda (ignitor dan generator plasma), bejana tekan, isolator HV, elektroda ekstraksi dan jendela foil (keluaran berkas elektron).

Gambar 1. Skematik sederhana perangkat Iradiator Elektron Pulsa (IEP)

Sumber elektron plasma berada di dalam BGP sehingga BGP merupakan bejana yang paling berperanan pada perangkat IEP. Karakteristik berkas elektron yang dihasilkan (keluaran) perangkat IEP sangat dipengaruhi oleh tegangan ekstraksi Ua dan parameter plasma di dalam BGP. Plasma di dalam BGP secara keseluruhan dianggap homogen dan distribusi energi elektron adalah Maxwellian [9]. Keadaan yang paling khusus, plasma mempunyai potensial positip terhadap elektroda lucutan dan ini berarti ion-ion diekstraksikan dari permukaan plasma, sedang elektron harus mengatasi halangan potensial untuk lolos dari permukaan plasma sampai dengan elektroda kolektor [10]. Dalam proses pembentukan berkas plasma, penambahan besar ekstraksi U_a harus menyebabkan tegangan penambahan besar kecepatan dan energi dari ion dan elektron. Aplikasi tegangan ekstraksi ion tidak akan merubah kondisi ion yang teremisi dari plasma ke daerah percepatan dan juga emisi ion tak merubah parameter plasma di dalam BGP. Oleh karenanya fenomena emisi atau ekstraksi elektron plasma adalah tidak sesederhana seperti ekstraksi ion dari permukaan plasma.

Skematik ekstraksi elektron dari permukaan plasma (potensial φ_p) melalui jendela emisi (anoda emitor/grid) dengan potensial φ_a ke kolektor

Prosiding Pertemuan dan Presentasi Ilmiah – Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir 2016 Pusat Sains dan Teknologi Akselerator, BATAN – Fakultas Matematika dan Ilmu Pengetahuan Alam, UNS Surakarta, 9 Agustus 2016

TEORI

Gambar 2. Skematik ekstraksi elektron dari permukaan plasma [11]

Persamaan umum rapat arus emisi elektron j_{ek} melalui halangan potensial ditentukan oleh relasi Boltzmann [12].

$$j_{ek} = j_{e0} \exp\left(\frac{-e\left(\varphi_p - \varphi_k\right)}{k T_e}\right)$$
(1)

dengan $j_{e0} = e n_e \sqrt{\frac{kT_e}{2\pi m}}$

(2)

dan j_{e0} adalah kerapatan arus elektron plasma termal, e = muatan elektron = 1,602 x 10⁻¹⁹ C, $n_e =$ kerapatan plasma, $m_e =$ massa elektron = 9,109 x 10⁻³¹ kg, $\varphi_p =$ potensial plasma, $\varphi_k =$ potensial kolektor, k = tetapan Boltzmann = 1,381 x 10⁻²³ J/K dan $T_e =$ suhu plasma.

Untuk emisi elektron dari plasma dengan tanpa tegangan ekstraksi U_a ($U_a = 0$). Agar dapat lolos dari plasma yakni saat tidak ada tegangan ekstraksi ($U_a = 0$) atau potensial kolektor $\varphi_k = 0$ maka elektron harus dapat mengatasi penghalang potensial, oleh karenanya kerapatan arus elektron ke kolektor j_{ek} diberikan oleh persamaan Boltzman

$$j_{ek} = j_{e0} \exp\left(\frac{-e\,\varphi_p}{k\,T_e}\right) \tag{3}$$

Ditunjukkan pada pers. (3) walaupun tidak ada tegangan ekstraksi ($U_a = 0$), tetapi tetap ada arus yang mengalir menuju ke kolektor, seperti ditunjukkan pada Gambar 3. Kalau tegangan ekstraksi U_a dinaikkan sehingga $0 < U_a < \varphi_p$) maka akan diperoleh persaman :

$$j_{ek} = j_{e0} \exp\left(\frac{-e\left(\varphi_p - \varphi_k\right)}{k T_e}\right)$$
(4)

Gambar 3. Emisi elektron dari plasma tanpa tegangan ekstraksi $(U_a = 0)$

Nilai j_{ek} pada pers. (4) lebih besar dari pada j_{ek} pada pers. (3) yakni saat $U_a = 0$ atau $\varphi_k = 0$. Jika nilai j_{ek} naik maka nilai φ_p juga naik yang akan menaikkan halangan potensial di permukaan dinding BGP dan meloloskan plasma elektron ke elektroda lain (yang tidak ke kolektor). Emisi elektron dengan tegangan ekstraksi ($0 < U_a < \varphi_p$) akan mengalami kenaikan potensial plasma φ ditunjukkan pada Gambar 4.

Gambar 4. Emisi elektron dari plasma dengan tegangan ekstraksi U_a ($0 < U_a < \varphi_p$)

Untuk tegangan ekstraksi U_a sama dengan tegangan plasma φ_p ($U_a = \varphi_p$) maka emisi elektronnya adalah seperti ditunjukkan pada Gambar 5.

Rapat arus emisi elektron j_e mencapai harga jenuh (maksimum) dengan nilai yang jauh lebih tinggi dari pada arus emisi elektron awal ($U_a = 0$) atau dapat dinyatakan dalam persamaan:

$$j_e = j_{e0} = e n_e \sqrt{\frac{kT}{2\pi m}}$$
⁽⁵⁾

Prosiding Pertemuan dan Presentasi Ilmiah – Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir 2016 Pusat Sains dan Teknologi Akselerator, BATAN – Fakultas Matematika dan Ilmu Pengetahuan Alam, UNS Surakarta, 9 Agustus 2016

Gambar 5. Emisi elektron dari plasma dengan tegangan ekstraksi $U_a = \varphi_p$

Ditunjukkan pada pers. (5) faktor naiknya arus emisi elektron adalah N dengan nilai :

$$N = \exp\left(\frac{e\,\varphi_p}{k\,T_e}\right) \tag{6}$$

Untuk emisi elektron dengan tegangan ekstraksi $U_a > \varphi_p$ maka akan tetap diperoleh besar j_e yang sama, sedang tenaga berkas elektronnya akan mengikuti nilai variasi tegangan ekstraksi U_a yang dipakai. Untuk emisi elektron dengan potensial pemercepat $U_a > \varphi_p$ ditunjukkan pada Gambar 6.

Gambar 6. Emisi elektron dari plasma dengan tegangan pemercepat $U_a > \varphi_p$

Dengan demikian pada tegangan ekstraksi $U_a > 0$, untuk $U_a < \varphi_p$, $U_a = \varphi_p$ dan $U_a > \varphi_p$ akan diperoleh besar j_e yang bernilai sama yakni sama dengan nilai j_e pada pers. (5), sedang yang berbeda adalah besar tenaga berkasnya yang sebanding dengan selisih naiknya tegangan ekstraksi.

TATA KERJA

Besar rapat arus elektron termal $j_e = j_0$ bergantung pada nilai kerapatan plasma n_e sedang suhu plasma T_e yang melukiskan tenaga partikel elekton plasma (11600 K = 1 eV) adalah sebanding dengan nilai tegangan ekstraksi U_a yang terpasang [13]. Oleh karenanya untuk merencanakan nilai arus ekstraksi elektron pada perangkat IEP, selain ditentukan oleh besar U_a untuk menaikkan tenaga berkas elektron juga harus diketahui penggunaan besar n_e di dalam BGP untuk penentuan besar arus elektron termalnya.

Besar n_e bergantung pada dimensi (volume) dan besar arus lucutan busur plasma I_d di dalam BGP, sedang nilai I_d bergantung pada pengoperasian sistem tegangan lucutan pemicu dan sistem tegangan lucutan busur. Suhu plasma T_e yang berhubungan dengan tenaga elektron dipengaruhi oleh besar U_a . Emisi berkas elektron pada jendela emisi atau pembentukan berkas elektron di daerah pemercepat akan optimum kalau kerapatan plasma pada BGP berada pada kisaran $n_e = (10^9 - 10^{12})$ cm⁻³[14].

Untuk BGP bentuk persegi panjang dengan volume V (panjang p, lebar l dan tinggi t), kalau arus sebesar I_d dengan lebar pulsa τ maka besar kerapatan plasma n_e yang merupakan jumlah muatan Q dibagi dengan V dapat dituliskan sebagai :

$$n_{e} = \frac{Q}{V} = \frac{I_{d} \tau}{p l t} (C cm^{-3})$$

$$n_{e} = \frac{I_{d} \tau}{p l t e} (partikel cm^{-3})$$
(7)

dengan e = muatan elektron = $1,602 \times 10^{-19} \text{ C}$

Kalau yang dikehendaki lebar pulsa arus busur $\tau = 100 \ \mu s$ dan luas alas BGP = $(p \times l) = 80 \ cm \times 20$ cm = 1600 cm² maka dengan mensubstitusikan besaran τ , p dan l dalam per. (7) diperoleh ukuran panjang t dalam persamaan :

$$t = \frac{I_d \tau}{p l n_e e} (cm) = 39,01373 \left(\frac{I_d}{n_e}\right) (cm) \quad (8)$$

Dari pers. (7) kalau dikehendaki arus busur plasma sebesar I_d tertentu dengan lebar pulsa $\tau = 100$ µs serta luas alas BGP bentuk persegi panjang yang akan digunakan adalah (panjang × lebar) = $(p \times l) =$ 80 cm × 20 cm = 1600 cm² maka dengan mensubstitusikan besaran τ , p dan l tersebut dapat diperoleh variasi besar tinggi t BGP bentuk persegi panjang sebagai fungsi arus busur plasma I_d dan kerapatan plasma n_e seperti ditunjukkan pada pers. (8).

Jendela emisi pada BGP ditutup dengan lembaran grid (kassa) dari bahan *Stainless Steel* (SS) bentuk bujur sangkar dengan ukuran lubang optimum. Kalau jarak antara lubang grid yang satu dengan lainnya diketahui maka untuk media/luasan emitor BGP seluas tertentu akan ada 1 lubang grid. Besar arus emisi elektron maksimum I_e yang melalui lubang grid merupakan hasil perkalian antara rapat

Prosiding Pertemuan dan Presentasi Ilmiah – Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir 2016 Pusat Sains dan Teknologi Akselerator, BATAN – Fakultas Matematika dan Ilmu Pengetahuan Alam, UNS Surakarta, 9 Agustus 2016

arus emisi elektron maksimum pada persamaan (2) dengan luas lubang grid. Besar I_e disamping akan bergantung pada parameter plasma seperti kerapatan elektron n_e , suhu elektron T_e juga bergantung pada ukuran jejari grid r_e . Karena jumlah lubang grid diketahui dan besar arus emisi elektron I_e yang melalui tiap lubang grid dapat dihitung, maka besar arus emisi elektron total yang keluar melalui emitor elektron pada bejana generator plasma dapat ditentukan.

HASIL DAN PEMBAHASAN

Pada Tabel 1 ditunjukkan hasil perhitungan variasi tinggi (*t*) BGP bentuk persegi panjang (luas alas = $p \times l = 80 \text{ cm} \times 20 \text{ cm}$) sebagai fungsi besar kerapatan plasma (n_e) dan arus lucutan busur (I_d). Kerapatan plasma n_e divariasi pada kisaran nilai kerapatan plasma optimum dalam BGP yakni dalam kisaran $n_e = (10^9 - 10^{12}) \text{ cm}^{-3}$, sedang arus lucutan busur plasma I_d divariasi dari $I_d = 30 \text{ A}$ sampai dengan $I_d = 60 \text{ A}$. Pada Tabel 2 yang merupakan lanjutan dari Tabel 1 yakni untuk arus lucutan busur plasma yang divariasi dari $I_d = 70 \text{ A}$ hingga $I_d = 90 \text{ A}$ tetapi untuk variasi nilai n_e dari $n_e = 7 \times 10^{11} \text{ cm}^{-3}$ sampai dengan $n_e = 10^{12} \text{ cm}^{-3}$.

Tabel 1. Tinggi *t* BGP bentuk persegi panjang (luas alas = $p \times l = 80$ cm × 20cm) sebagai fungsi besar kerapatan plasma (n_e) dan arus lucutan busur (I_d) untuk lebar pulsa $\tau = 100$ µs. (n_e divariasi dari 10⁹ cm⁻³ s.d. 10¹² cm⁻³ dan I_d divariasi dari 30 A s.d. 60 A)

No.	Kerapatan <i>n</i> _e ×10 ¹⁰ cm ⁻³	Tinggi t (cm) untuk $I_d = 30$ A	Tinggi t (cm)Tinggi t (cm)untuk $I_d = 40$ Auntuk $I_d = 50$ A		Tinggi t (cm) untuk $I_d = 60$ A
1	0,1	11704,120	15605,490	19506,870	23408,240
2	0,2	5852,060	7802,747	9753,433	11704,120
3	0,3	3901,373	5201,831	6502,289	7802,747
4	0,4	2926,030	3901,373	4876,717	5852,060
5	0,5	2340,824	3121,099	3901,373	4681,648
6	0,6	1950,687	2600,916	3251,144	3901,373
7	0,7	1672,017	2229,356	2786,695	3344,034
8	0,8	1463,015	1950,687	2438,358	2926,030
9	0,9	1300,458	1733,944	2167,430	2600,916
10	1	1170,412	1560,549	1950,687	2340,824
11	2	585,206	780,275	975,343	1170,412
12	3	390,137	520,183	650,229	780,275
13	4	292,603	390,137	487,672	585,206
14	5	234,082	312,111	390,137	468,165
15	6	195,069	260,092	325,114	390,137
16	7	167,202	222,936	278,669	334,403
17	8	146,301	195,069	243,836	292,603
18	9	130,046	173,394	216,743	260,092
19	10	117,041	156,055	195,069	234,082
20	20	58,521	78,0275	97,5343	117,041
21	30	39,014	52,018	65,023	78,027
22	40	29,2603	39,014	48,767	58,521
23	50	23,408	31,211	39,014	46,816
24	60	19,507	26,009	32,511	39,014
25	70	16,720	22,293	27,867	33,440
25.a	75	15,605	20,807	26,009	31,211
25.b	76	15,400	20,533	25,667	30,800
25.c	77	15,200	20,267	25,333	30,400
25.d	78	15,005	20,007	25,009	30,010
25.e	79	14,815	19,754	24,692	29,631
26	80	14,630	19,507	24,383	29,260
27	90	13,004	17,339	21,674	26,009
28	100	11,704	15,605	19,507	23,408

Prosiding Pertemuan dan Presentasi Ilmiah – Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir 2016 Pusat Sains dan Teknologi Akselerator, BATAN – Fakultas Matematika dan Ilmu Pengetahuan Alam, UNS Surakarta, 9 Agustus 2016

Tabel 2. Tir	nggi t BGP bentuk persegi panjang (luas alas = $p \times l$ = 80cm \times 20cm) sebagai fung	si besar	kerapatan
pl	lasma (n_e) dan arus lucutan busur (I_d) untuk lebar pulsa $\tau = 100\mu$ s $(n_e$ divariasi da	ri 7×1011	cm ⁻³ s.d.
10	0^{12} cm^{-3} dan I_d divariasi dari 60 A s.d. 90 A)		

No.	Kerapatan n_e ×10 ¹⁰ cm ⁻³	Tinggi t (cm) untuk $I_d = 60$ A	Tinggi t (cm) untuk $I_d = 70$ A	Tinggi t (cm) untuk $I_d = 80$ A	Tinggi t (cm) untuk $I_d = 90$ A
25	70	33,440	39,014	44,587	50,160
25.a	75	31,211	36,413	41,615	46,816
25.b	76	30,800	35,934	41,067	46,200
25.c	77	30,400	35,467	40,534	45,600
25.d	78	30,010	35,012	40,014	45,016
25.e	79	29,631	34,569	39,507	44,446
26	80	29,260	34,137	39,014	43,890
27	90	26,009	30,344	34,679	39,014
28	100	23,408	27,310	31,211	35,112

Mengacu data teknis yang pernah dilakukan orang lain yakni dengan menggunakan dimensi BGP bentuk persegi panjang berukuran volume $V = p \times l$ $\times t = 24.000 \text{ cm}^3$ dengan luas lubang emisi berkas elektron 65 cm × 15 cm [8], maka dari hasil perhitungan pada Tabel 1 yakni untuk penggunaan ukuran tinggi BGP 15 cm (t = 15 cm) dengan arus lucutan busur plasma $I_e = 30$ A ($\tau = 100 \ \mu s$) terjadi pada kerapatan plasma $n_e = 78 \times 10^{10}$ cm⁻³. Nilai kerapatan $n_e = 78 \times 10^{10}$ cm⁻³ tersebut (lihat Tabel 1 dan Tabel 2) dapat digunakan pada dimensi BGP bentuk persegi panjang dengan ukuran : $(p \times l \times t) =$ $(80 \times 20 \times 15) \text{ cm}^3$ untuk $I_e = 30 \text{ A} (\tau = 100 \text{ us})$ seperti ditunjukkan pada Gambar 7, atau kalau diinginkan perolehan arus lucut yang lebih besar harus digunakan dimensi BGP ($80 \times 20 \times 40$) cm³ yakni dapat diperoleh $I_e = 80 \text{ A} (\tau = 100 \text{ } \mu\text{s}).$

Gambar 7. Bejana Generator Plasma bentuk persegi panjang berukuran $(80 \times 20 \times 15)$ cm³

Pada dinding BGP dibuat jendela emisi berukuran 65×15 cm² yang berfungsi sebagai emitor plasma. Jendela emisi ditutup dengan lembaran grid (kassa) dari bahan SS bentuk bujur sangkar dengan ukuran lubang optimum $0,50 \times 0,50$ mm² [15]. Kalau jarak antara lubang grid yang satu dengan lainnya adalah sebesar 0,25 mm maka untuk media/luasan emitor BGP seluas 0.75×0.75 mm² akan ada 1 lubang grid seperti ditunjukkan pada Gambar 8.

Gambar 8. Grid bujur sangkar $0,50 \times 0,50 \text{ mm}^2$, 4 buah grid menempati luasan $1,50 \times 1,50$ = 2,250 mm²

Besar arus emisi elektron maksimum I_e yang melalui lubang grid merupakan hasil perkalian antara rapat arus emisi elektron maksimum pada persamaan (2) dengan luas lubang grid. Besar I_e disamping akan bergantung pada parameter plasma juga bergantung pada ukuran jejari grid r_e . Karena jumlah lubang grid diketahui dan besar arus emisi elektron I_e yang melalui tiap lubang grid dapat dihitung, maka besar arus emisi elektron total yang keluar melalui emitor elektron pada BGP dapat ditentukan.

Grid dalam bentuk bujur sangkar berukuran $0,50 \times 0,50 \text{ mm}^2$ adalah identik dengan grid bentuk lingkaran dengan jejari 0,28 mm atau 2,8 × 10⁻⁴ m karena besar luas dari kedua bentuk geometri tersebut mempunyai nilai yang sama. Selanjutnya hal ini bisa dijadikan sebagai standar bahwa setiap lubang grid bentuk lingkaran dengan jejari 0,28 mm $\approx 0,30$ mm merupakan ukuran lubang grid optimum [16].

Mengingat jejari lubang grid optimum (bentuk lingkaran) untuk SEKP adalah 0,30 mm dan jarak antar grid yang berdekatan adalah sejauh 0,25 mm maka untuk suatu media luasan permukaan emitor 0,85 \times 0,85 mm² akan ditempati oleh 1 (satu) lubang grid. Pada Gambar 9 ditunjukkan 4 (empat) buah lubang grid yang saling berdekatan dengan masing-masing lubang berdiameter 0,56 mm pada suatu media luasan 0.81 \times 0.81 mm².

Penentuan besar arus emisi elektron yang melalui grid dengan besar arus emisi tertentu, dapat dilakukan dengan cara memvariasi ukuran jejari grid r_e serta nilai parameter plasma dalam BGP (n_e dan T_e). Pada BGP bentuk persegi panjang berukuran (80 × 20 × 15) cm³ dengan menggunakan luasan grid/emitor total seluas 15 × 65 cm², diharapkan dapat diperoleh arus berkas elektron optimum I_e yang tentunya juga akan bergantung pada nilai efisiensi ekstraksi elektron α .

Pada Tabel 3 ditunjukkan hasil perhitungan jumlah lubang grid pada luasan anoda emisi $A = 15 \times$ 65 cm² terhadap variasi jejari lubang grid r_e dengan jarak antara lubang grid h = 0,25 mm untuk lubang grid bentuk lingkaran atau bujur sangkar. Pada Tabel 4 ditunjukkan hasil perhitungan besar arus emisi elektron (I_e) sebagai fungsi jejari grid (0,28 mm sampai dengan 0,90 mm) pada kerapatan elektron plasma $n_e = 10^{16}$ m⁻³ untuk berbagai nilai suhu elektron T_e (1 eV s.d. 5 eV), serta dilanjutkan pada Tabel 5 untuk T_e (6 eV s.d. 10 eV).

Pada Tabel 6 ditunjukkan hasil perhitungan besar I_e sebagai fungsi jejari grid (0,28 mm sampai dengan 0,90 mm) pada kerapatan elektron plasma n_e = 10^{17} m⁻³ untuk berbagai nilai suhu elektron T_e (1 eV s.d. 5 eV), serta dilanjutkan pada Tabel 7 untuk T_e (6 eV s.d. 10 eV).

Tabel 3. Hasil perhitungan jumlah lubang grid pada luasan anoda emisi $A = 15 \times 65$ cm² terhadap variasi jejari lubang grid r_e dengan jarak h = 0,25 mm

	Jumlah lubang grid (pada anoda emisi $A = 15 \times 65$ cm ² terhadap variasi jejari lubang grid r_e dengan jarak antar lubang grid $h = 0,25$ mm							
No	Jejari grid r _e (mm)	Sisi bujursangkar s = (π re ²) ^{1/2}	Luas media tiap grid L = (s + h) ²	Jum. lubang grid Bujur sangkar				
1	0,28	0,50	0,56	175121				
2	0,30	0,53	0,61	159600				
3	0,40	0,71	0,92	106059				
4	0,50	0,88	1,29	75552				
5	0,60	1,06	1,72	56538				
6	0,70	1,24	2,22	43893				
7	0,80	1,42	2,78	35060				
8	0,90	1,59	3,40	28648				

Tabel 4. Nilai arus emisi elektron (I_e) sebagai fungsi panjang sisi bujur sangkar atau jejari lubang grid r_e (pada $n_e = 10^{16} \text{ m}^{-3}$ untuk suhu elektron $T_e = (1, 2, 3, 4, 5) \text{ eV}$

Panjang sisi	Jumlah lubang	Suhu Elektron Plasma Te (K)/Arus Emisi Elektron					
(mm)	grid bj.sangkar	1×1160 / Ie (A)	2×11600 / Ie (A)	3×11600 / Ie (A)	4×11600 / Ie (A)	5×11600 / Ie (A)	
0,50	175121	11,5	16,3	19,9	23,0	25,7	
0,53	159600	12,0	17,0	20,8	24,1	26,9	
0,71	106059	1,4,2	20,1	24,6	28,4	31,8	
0,88	75552	1,5,8	22,4	27,4	31,6	35,4	
1,06	56538	1,7,0	24,1	29,5	34,1	38,1	
1,24	43893	1,8,0	25,5	31,2	36,0	40,3	
1,42	35060	1,8,8	26,6	32,5	37,6	42,0	
1,59	28648	1,9,4	27,5	33,7	38,9	43,4	

Tabel 5. Nilai arus emisi elektron (I_e) sebagai fungsi panjang sisi bujur sangkar atau jejari lubang grid r_e (pada $n_e = 10^{16} \text{ m}^{-3}$) untuk suhu elektron $T_e = (6, 7, 8, 9, 10) \text{ eV}$

Panjang sisi	Jum. lubang	Suhu Elektron Plasma Te (K)/Arus Emisi Elektron					
(mm)	grid bj.sangkar	6× 11600 / <i>I</i> _e (A)	7×11600 / Ie (A)	8×11600 / Ie(A)	9×11600 / Ie (A)	10×11600 / Ie (A)	
0,50	175121	28,2	30,4	32,5	34,5	36,4	
0,53	159600	29,5	31,8	34,0	36,1	38,0	
0,71	106059	34,8	37,6	40,2	42,6	44,9	
0,88	75552	38,7	41,8	44,7	47,4	50,0	
1,06	56538	41,7	45,1	48,2	51,1	53,9	
1,24	43893	44,1	47,6	50,9	54,0	56,9	
1,42	35060	46,0	49,7	53,1	56,4	59,4	
1,59	28648	47,6	51,4	55,0	58,3	61,4	

Tabel 6. Nilai arus emisi elektron (I_e) sebagai fungsi panjang sisi bujur sangkar atau jejari lubang grid r_e (pada $n_e = 10^{17} \text{ m}^{-3}$ untuk suhu elektron $T_e = (1, 2, 3, 4, 5) \text{ eV}$

Paniang sisi	Jumlah lubang grid bj.sangkar	Suhu Elektron Plasma T_e (K)/Arus Emisi Elektron					
grid bj. sangkar (mm)		1×1160/ I _e (A)	2×11600 / I _e (A)	3×11600 / I _e (A)	4×11600 / Ie (A)	5×11600 / I _e (A)	
0,50	175121	115	163	199	230	257	
0,53	159600	120	170	208	241	269	
0,71	106059	142	201	246	284	318	
0,88	75552	158	224	274	316	354	
1,06	56538	170	241	295	341	381	
1,24	43893	180	255	312	360	403	
1,42	35060	188	266	325	376	420	
1,59	28648	194	275	337	389	4,34	

Tabel 7.	Nilai arus emisi elektron	Ie) sebagai fungsi panjang sisi bujur sangkar atau jejari l	ubang grid r_e (pada
	$n_e = 10^{17} \text{ m}^{-3}$) untuk suhu	elektron $T_e = (6, 7, 8, 9, 10) \text{ eV}$	

Panjang sisi	Jum. lubang	Suhu Elektron Plasma Te (K)/Arus Emisi Elektron					
(mm)	grid bj.sangkar	6×11600 / I _e (A)	7×11600 / I _e (A)	8×11600 / I _e (A)	9×11600 / Ie (A)	10×11600 / I _e (A)	
0,50	175121	282	304	325	345	364	
0,53	159600	295	318	340	361	380	
0,71	106059	348	376	402	426	449	
0,88	75552	387	418	447	474	500	
1,06	56538	417	451	482	511	539	
1,24	43893	441	476	509	540	569	
1,42	35060	460	497	531	564	594	
1,59	28648	476	514	550	583	614	

Pada Gambar 10 ditunjukkan gambar grafik data hasil eksperimen (awal) untuk besar arus ekstraksi berkas elektron I_e (A) terhadap variasi berbagai tegangan ekstraksi (0 – 3000) Volt.

Tegangan Ekstraksi (V) Gambar 10. Grafik arus berkas elektron (A) versus tegangan ekstraksi (Volt) pada beban R= 10 ohm

Menurut teori, besar efisiensi ekstraksi elektron akan berlaku untuk jejari lubang grid (r_e) jauh lebih kecil dari pada tebal sheat plasma (le) dan nilai optimumnya sebesar $\alpha_{opt.} = 0,50$. Hal ini boleh diartikan bahwa nilai efisiensi α berada pada kisaran (0 - 50) %. Besar efisiensi ekstraksi elektron (a) pada tegangan ekstraksi (maksimum) yang akan diperoleh adalah sebesar $\alpha = I_e/I_{ADPS} =$ 29.80 A / 80 A = 37.25 %.Selanjutnya dapat dilihat dari Tabel (hasil perhitungan), besar arus emisi berkas elektron Ie yang nilainya mendekati 29,80 A tersebut adalah sebesar $I_e = 29,50$ A (pada Tabel 5), sehingga ukuran lubang grid dan parameter plasma yang bersesuaian dan atau yang terbaik untuk dipakai dalam IEP adalah bentuk bujur sangkar dengan panjang sisi p = 0.53 mm atau p mendekati nilai 0,50 (p \approx 0,50 merupakan ukuran umum di pasaran) serta parameter plasma pada BGP menggunakan kerapatan elektron $n_e = 10^{16} \text{ m}^{-3}$ dan suhu elektron plasma $T_e = 6 \text{ eV}$.

KESIMPULAN

Besar kerapatan plasma n_e bergantung pada dimensi (volume) BGP dan besar arus lucutan busur plasma I_d serta lebar pulsa τ yang terjadi di dalam BGP, sedang nilai I_d dan τ tersebut bergantung pada pengoperasian/pengaturan sistem sumber daya pemicu dan sumber daya lucutan busur plasma. Atas dasar hasil perhitungan dapat disimpulkan bahwa untuk penggunaan $I_d = 80$ A dengan $\tau = 100 \ \mu s$ pada $n_e = 78 \times 10^{10} \ \mathrm{cm}^{-3} \ \mathrm{dan} \ \mathrm{luas}$ lubang emisi berkas elektron (65 x 15) cm² dapat digunakan dimensi BGP bentuk persegi panjang dengan ukuran (80×20×40) cm³. Dari hasil perhitungan dan eksperimen awal diperoleh nilai efisiensi ekstraksi elektron (α) pada tegangan ekstraksi V = 3 kV adalah sebesar $\alpha = 37,25$ %. Bentuk dan ukuran lubang grid yang terbaik untuk digunakan pada perangkat IEP adalah bentuk bujur sangkar dengan panjang sisi $p \approx 0.50$ mm serta parameter plasma pada BGP yang digunakan adalah $n_e = 10^{16} \text{ m}^{-3} \text{ dan } T_e = 6 \text{ eV}.$

UCAPAN TERIMA KASIH

Penulis mengucapkan banyak terima kasih kepada Bapak Kapus PSTA BATAN yang telah membiayai penelitian ini melalui Proyek DIPA 2015 serta kepada semua rekan-rekan di grup penelitian Sumber Elektron Katoda Plasma atas segala masukan dan sarannya sehingga makalah ini bisa diselesaikan, semoga semua amal mereka akan mendapatkan balasan yang setimpal dari Allah SWT.

DAFTAR PUSTAKA

1. Sudjatmoko, dkk., *Uji Fungsi Perangkat* Sistem Sumber Elektron Katoda Plasma Untuk Large Area E-Beam, Usulan Kegiatan

- J.Z. Gleizer, V. Vekselman, S. Yatom, J. Felsteiner, and Y.E. Krasik, *Radiation Effects* & *Defects in Solids*, First, 1-10, 2011.
- 3. J.Z. Gleizer, V. Vekselman, S. Yatom, J. Felsteiner, and Y.E. Krasik, *Journal of Applied Physics* 103, 2008.
- h t t p : / / w w w . g l o w discharge.com/?Physical_background:Glow_D ischarges: Discharge_Regimes, 2014.
- A. Krokhmal, J.Z.Gleizer, Ya.E.Krasik, V.T.S. Gurovich, and J.Felsteiner, *Grid-controlled Electron Emission From A Hollow-Anode Electron Source*, Physics Department, Techniuon, 32000 Haifa, Israel, 7 January 2004.
- Efim Oks, Lecture 6 Electron Extraction, presented in BATAN Accelerator School, Yogyakarta, Indonesia, 5th - 9th Dec. 2011.
- Efim Oks, *Plasma Cathode Elektron Sources*, Physics, Technology, Applications, Institute of High Current Elektronics (IHCE), Russian Academy of Sciences, 2/3 Akademichiscy Ave, 634055 Russia. Translated from Russian by Titiana, Cherkashina and Anna Korovina December (2006).
- 8. R. Purwadi, et al., Application of Large Area Plasma Cathode Elektron Beam for Natural Rubber Vulcanitation, ITAC Ltd., 8-2 Kamisuwa Tsubame City Niigata 959-0181 Niigata, Japan (2010) 497-501.
- J.A. Bittencourt, Fundamental Of Plasma Physics, Research Scientist and Professor Institute For Space Research (INPE), p.663-664, Pergamon Press (Aust.) Pty. Ltd., PO. Box544, Potts Point, N.S.W., Australia (2011)
- Efim Oks, Lecture 4 Mechanisms of plasma electron emission (electron emission 1), presented in BATAN Accelerator School, Yogyakarta, Indonesia, 5th - 9th December (2011).
- A.V. Zharinov, Yu.A. Kovalenko, I.S. Roganov, P.M. Teryukanov, Soviet Physics – Technical Physics, 31, No. 1, 39 (1986).
- Efim Oks, Lecture 4 Electron emission from plasma, presented in BATAN Accelerator School, Yogyakarta, Indonesia, 5th - 9th December (2011).
- 13. Efim Oks, Lecture 3 Basic Plasma Parameters (Electron temperature T_e), presented in BATAN Accelerator School, Yogyakarta, Indonesia, 5th 9th December (2011).

- 14. Agus Purwadi, Optimasi Arus Berkas Elektron dan Penentuan Harga Parameter Plasma Dalam Bejana Generator Plasma, Jurnal Iptek Nuklir, Ganendra, Volume 17 Nomor 2 Juli 2014, ISSN1410-6957, Terakreditasi Nomor: 551/AU2/P2MI-LIPI/06/2013, Pusat Sains dan Teknologi Akselerator-BATAN, Yogyakarta, Juli (2014).
- Efim Oks, Lecture 4 Mechanisms of plasma electron emission, Accelerator School, Yogyakarta, Indonesia (5th - 9th December 2011).
- Efim Oks, Lecture 8 "DUET" Broad beam electron source, presented in BATAN Accelerator School, Yogyakarta, Indonesia (5th - 9th December 2011)

TANYA JAWAB

Darsono

- cara mengukur arus elektron?

Agus Purwadi

Medan magnet terinduksi B(t) oleh arus lucutan I(t)

$$: B(t) = \frac{\mu I(t)}{2\pi a}$$

Fluks:
$$\phi(t) = ANB(t) = \frac{\mu AN}{2\pi a}I(t)$$

Tegangan terinduksi V(t) yang lewat terminal koil:

$$V(t) = -\frac{d\phi(t)}{dt} = -\frac{\mu AN}{2\pi a} \frac{dI(t)}{dt}$$

Supaya I(t) dapat terukur dalam praktek digunakan rangkaian ekivalen

Persamaan rangkaian ekivalen tegangan V(t) loop tertutup

$$V(t) = Lc\left(\frac{dI}{dt}\right) + i(R+Rc) + \frac{1}{C}\int_{0}^{t} tdt$$

Digunakan resistor R>>Rc dan R>> Lcw

$$V(t) = iR + \frac{1}{C} \int_{0}^{t} t dt$$
$$V(t) = iR$$

Tegangan keluaran koil Vo(t) terintegrasi

$$V_o(t) = \frac{1}{RC} \int_0^t V(t) dt$$
$$V_o(t) = \frac{\mu A N I(t)}{2\pi a RC} \text{ atau } I(t) = \frac{2\pi a R C}{\mu A N} V_o(t)$$

Terlihat bahwa arus elektron I(t) hanya bergantung pada $V_o(t)$ yang terukur pada osiloskop (besaranbesaran lain adalah konstanta/dapat diukur langsung)

 $\mu = \mu_o \mu_r$

 μ_o : permeabilitas diruang hampa

 μ_r : permeabilitas relatif

2. Metode Faraday Cup

Menampung berkas elektron pada luasan tertentu dan diukur arus yang mengalir dengan memasang sesuatu tahanan

3. Metode R-Shunt Diukur arus elektron I atas dasar pemasangan tahanan (R-Shunt) Hukum Ohm

diperoleh dengan bantuan alat

$$I = \frac{V}{R}$$

Besar : R = terukur/dibuat
Harga V = diperoleh deng

=

osiloskop