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 Abstract: Erythrina crista-galli is commonly used in folk medicines for its 
pharmacological properties which are associated with the bioactive compounds. Profiling 
botanical parts of E. crista-galli is an exciting topic and essential to uncover the similarity 
and clustering based on their chemical content. The botanical parts of E. crista-galli, 
including bark, flowers, leaves, roots, and twigs, were subjected to pyrolysis-gas 
chromatography/mass spectrometry. The samples were pyrolyzed using a multi-shot 
pyrolyzer. The relative abundance of the pyrolysate was subjected to multivariate 
analysis, i.e., principal component analysis (PCA) and hierarchical cluster analysis 
(HCA). The scree plot for PC.1, PC. 2, and PC. 3 accounted for 36.5%, 27.2%, and 20.3%, 
respectively. Together, the first three PCs explain 84% of the total variance. The PCA 
allows characterizing the roots of E. crista-galli by the highest relative abundance of lignin 
G, followed by the twigs, bark, and leaves, while the flowers had the least relative 
abundance of lignin G. The HCA allows to cluster the botanical parts of E. crista-galli 
into three different clusters based on their chemical component similarity, i.e., flowers-
leaves, twigs, and roots-bark. In conclusion, Py-GC/MS analysis can be used in 
conjunction with multivariate data analysis to characterize the botanical parts of E. 
crista-galli. 

Keywords: E. crista-galli; pyrolysis-GC/MS; multivariate analysis; principal component 
analysis; hierarchical clustering analysis 

 
■ INTRODUCTION 

Erythrina (Fabaceae) is a large genus comprising 
around 200 species [1]. They are commonly used in folk 
medicines in Asian, African, and South American 
countries due to their pharmacological properties. One of 
the Erythrina species, E. crista-galli, was traditionally used 
as a wound healing and sedative. Meanwhile, people in 
Indonesia used E. crista-galli for malaria treatment by 
stewing the leaves and barks [2]. Additionally, E. crista-
galli was also reported to have laxative, hypertensive, and 
diuretic activities. The botanical parts of E. crista-galli 

have various bioactivity; for example, the aerial parts of 
E. crista-galli have analgesic and anti-inflammatory 
activities; the root has antibacterial and antifungal 
activities, the bark has antibacterial, antimycobacterial, 
and antifungal activities; the leaves have antibacterial, 
antifungal, antivirus, animal repellent, and cytotoxic 
activities; while the flowers show antimutagenic activity 
[3]. These efficacies are associated with the metabolites 
constituents, which may unevenly spread within the 
botanical parts of E. crista-galli, as reported for some 
other species [4-5]. Thus, profiling the botanical parts of 
E. crista-galli is an exciting topic and essential to uncover 
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the similarity and the clustering of every botanical part 
based on their chemical content. 

Various methods can be used for metabolite 
profiling, such as gas chromatography (GC) [6], high-
performance liquid chromatography (HPLC) [7], gas 
chromatography coupled to mass spectrometry (GC-MS) 
[8], gas chromatography coupled to time-of-flight mass 
spectrometry (GC-TOF-MS) [9], ultra-performance 
liquid chromatography coupled to time-of-flight mass 
spectrometry (UPLC-TOFMS) [10], and pyrolysis-gas 
chromatography/mass spectrometry (Py-GC/MS) [5]. 
Among these methods, Py-GC/MS has the advantage that 
it is a fast analysis method, it requires simple sample 
preparation and a small amount of sample. Py-GC/MS 
can analyze diverse metabolite species, including high 
molecular weight metabolites, which in turn provides the 
opportunity to analyze the whole compound including 
primary and other metabolites [11]. 

Pyrolysis works by applying heat greater than the 
energy of specific bonds so that the molecule will fragment 
in a reproducible way. The fragments produced are then 
separated by the capillary column of the GC to produce 
the pyrogram. The interpretations of resulting pyrograms 
require detailed knowledge of the pyrolysis behavior of 
the desired compounds. This poses extreme difficulty for 
the global elucidation of metabolites, but since the Py-
GC/MS of complex matrices results in a complex mixture 
of volatile fragments of the original sample, the resulting 
pyrogram can be used very effectively as a fingerprint of 
that particular sample. The analysis of the fingerprint 
pattern of these samples is often accomplished by the use 
of multivariate statistical techniques, which can be used to 
reveal relationships between samples and correlations 
between variables [12]. Two of the most used multivariate 
techniques to explore similarities and hidden patterns 
among samples are principal component analysis (PCA) 
and hierarchical cluster analysis (HCA) [13]. 

When the variables in a data set are highly 
correlated, which suggests data redundancy, PCA is 
extremely beneficial. PCA can be used to reduce the 
original variables into a smaller number of new variables 
called principal components that explain the majority of 
the variance in the original variable due to this 

redundancy [14]. PCA can also provide visualization to 
look for grouping in a data set. However, this method 
does not explicitly define clusters, and this is where the 
HCA method comes in [15]. HCA is a method to 
determine the underlying structure of observations by 
repeating a procedure that associates or dissociates each 
object until they are all processed wholly and equally. 
This method divides samples from a data set into groups 
that are related to one another [16]. Therefore, in our 
study, we use HCA in addition to PCA to explore 
similarities and hidden patterns among different parts of 
E. crista-galli. 

In this study, Py-GC/MS was applied to 
characterize the botanical parts (bark, flowers, leaves, 
roots, and twigs) of E. crista-galli. The result obtained 
from Py-GC/MS was then subjected to PCA and HCA 
multivariate analysis to distinguish between parts of E. 
crista-galli based on their whole chemical component. 
The PCA and HCA analyses were performed in the R 
programming language. To the best of our knowledge, 
this is the first study that aimed to characterize five 
different parts of the E. crista-galli plant based on their 
whole metabolites using Py-GC/MS and to cluster these 
different parts of E. crista-galli based on their metabolite 
fingerprint similarity. 

■ EXPERIMENTAL SECTION 

Materials 

Materials used were the botanical parts of E. crista-
galli, including bark, flowers, leaves, roots, and twigs, 
that were collected from Bandung, West Java, Indonesia. 
These plant materials have been determined at the 
Laboratory of Agricultural Production Technology & 
Services, Agricultural Cultivation Department, Faculty 
of Agriculture, Universitas Padjajaran, under voucher 
specimen number 1020. 

Instrumentation 

The equipment used in this study was eco-cup SF 
PY1-EC50F, glass wool, multi-shot pyrolyzer (EGA/PY-
3030D) interfaced with GC/MS system QP-2020 NX 
(Shimadzu, Japan) equipped with an SH-Rxi-5Sil MS 
column with electron impact of 70 eV. 
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Procedure 

Pyrolysis-GC/MS measurement 
Py-GC/MS was performed on several botanical parts 

of E. crista-galli plants (i.e., bark, flowers, leaves, roots, 
and twigs). About 500 μg of samples were analyzed by Py-
GC/MS. It was put in eco-cup SF PY1-EC50F and covered 
by glass wool. Furthermore, the eco-cup was pyrolyzed at 
500 °C for 6 s using a multi-shot pyrolyzer (EGA/PY-
3030D) which was interfaced (interface temperature 
280 °C) with a GC/MS system QP-2020 NX (Shimadzu, 
Japan) equipped with an SH-Rxi-5Sil MS column 
(30 m × 0.25 mm i.d. film thickness 0.25 μm), with 
electron impact of 70 eV and helium as a carrier gas. The 
pressure was 20.0 kPa (15.9 mL/min, column flow 
0.61 mL/min). The temperature profile for GC was as 
follows: 50 °C held for 1 min. Then the temperature 
increased until 280 °C (5 °C/min), and 13 min at 280 °C. 
Products resulting from the pyrolysis were identified by 
comparing their retention times and mass spectra data 
with NIST LIBRARY 2017.14. The identified pyrolysates 
were further compared with the literature [17]. 

Multivariate analysis 
In this study, we performed two multivariate 

analyses, PCA which was followed by agglomerative 
hierarchical clustering or Hierarchical Clustering on 
Principal Components (HCPCs). Pyrograms of the 
botanical parts were assigned a matrix (row i, column k). 
The botanical parts were assigned as observations (i), 
whereas pyrolysis products were as descriptors (k). Mean 
centering and scaling were applied to the matrix during 
the preprocessing stage. The mean centering procedure 
was performed to maintain the important variation. The 
scaling step was employed due to the different scales of 
pyrolysis products. 

An orthogonal linear transformation was applied to 
the matrix to produce principal components [18]. Fs (resp. 
Gs) indicates the coordinate vectors of the samples (resp. 
pyrolysis products), which can be expressed as Eq. (1) and 
(2): 

s ik k s
ks

1F (i) x m G (k)

  (1) 

s ik i s
ks

1G (k) x p F (i)

  (2) 

whereas Fs(i) and Gs(k) represent the coordinates of the 
botanical part i and pyrolysis product k on the axis s. 
Notation λs is the eigenvalue corresponding to the axis s. 
Notations of mk and pi are the weights associated with 
pyrolysis product k and the botanical part i, respectively, 
whereas xik refers to the matrix (row i, column k). The 
first PCs responsible for at least 80% variance were 
retained and subjected to agglomerative hierarchical 
clustering. The most similar individual observations i 
were agglomerated iteratively based on the pairwise 
distance of Ward’s criterion. The number of clusters was 
selected according to the hierarchical tree. PCA and 
HCPC were computed in the R programming language 
environment using FactoMineR [19]. The results were 
visualized using factoextra [20] or ggplot2 [21]. Leave-
one-out cross-validation (LOOCV) computation for 
PCA was performed using chemometrics [22]. 

■ RESULTS AND DISCUSSION 

Pyrolysis Products of the Botanical Parts of E. 
crista-galli 

The chemical compositions of bark, flowers, leaves, 
roots, and twigs of E. crista-galli were analyzed by Py-
GC/MS. This analysis method produces a pyrogram that 
plots retention time to its relative intensity. The resulting 
pyrograms from the analysis of botanical parts of E. 
crista-galli are given in Fig. 1. 

According to the resulting pyrogram (Fig. 1), 93 
pyrolysis products (pyrolysates) were identified by 
comparing their retention times with mass spectra data 
with NIST LIBRARY 2017.14. Table 1 shows pyrolysates 
and their relative intensities in each sample. The most 
abundant pyrolysates belong to polysaccharides, 
followed by lignins and extractives. This finding is 
unsurprising since polysaccharides and lignins are the 
main constituents of plant materials [23]. In softwood, 
polysaccharides such as cellulose and hemicellulose 
compose 41–50 and 11–33% of the biomass, respectively, 
while lignin constitutes 19–30%. The cellulose and 
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Fig 1. Pyrogram comparison of 5 botanical parts of E. crista-galli 

Table 1. Pyrolysis products and their relative abundance 
tR 

(min) a 
Pyrolysis product 

SI 
(%)b 

Molecular 
formula 

Relative abundance (%) 
Roots Flowers Leaves Bark Twigs 

 Polysaccharide 
1.927 ammonium carbamate 98 CH6N2O2 15.230 25.440 18.070 18.690 17.380 
2.177 2-oxopropanal 88 C3H4O2 3.690 1.590 4.830 4.610 3.030 
2.343 2-methylpropanal 95 C4H8O - - 0.800 0.330 0.830 
2.472 butane-2,3-dione 91 C4H6O2 1.810 1.030 1.240 1.470 6.470 
2.585 3-methylbutanoic acid 74 C5H10O2 - 2.800 - - - 
2.768 acetic acid 96 C2H4O2 9.700 2.980 4.390 6.150 0.660 
2.918 2,5-dihydrofuran 87 C4H6O 0.840 0.370 0.510 0.580 4.840 
2.977 1-hydroxypropan-2-one 98 C3H6O2 - 4.830 4.030 4.920 0.400 
3.015 1-hydroxypropan-2-one 97 C3H6O2 5.090 - - - 0.490 
3.267 2-oxobutyl acetate 84 C6H10O3 0.360 - - - 1.250 
3.409 2,3-dihydro-1,4-dioxine 82 C4H6O2 0.720 - 0.620 0.760 3.000 
3.823 1-methylpyrrole 92 C5H7N 0.380 - 0.450 0.550 2.100 
4.034 3-methylpenta-1,4-diene 84 C6H10 1.470 2.120 1.190 1.440 0.470 
4.285 1-nitropropan-2-one 83 C3H5NO3 2.430 1.830 2.500 2.090 1.160 
4.603 methyl 2-oxopropanoate 96 C4H6O3 2.330 0.890 0.920 2.260 0.700 
4.861 5-(cyclohexylmethyl)pyrrolidin-2-one 83 C11H19NO 0.470 - - 0.940 1.380 
5.534 furan-2-carbaldehyde 90 C5H4O2 1.320 0.570 0.570 1.200 0.820 
6.100 2-hydroxycyclohexyl acetate 81 C8H14O3 0.960 - 0.570 0.740 4.120 
6.268 2-oxopropyl acetate 95 C5H8O3 1.180 0.620 0.760 1.610 - 
7.367 4,4-dimethyl-5-oxopentanenitrile 77 C7H11NO 0.250 - - - - 
7.564 2H-furan-5-one 91 C4H4O2 1.170 - - 0.720 - 
7.964 cyclopentane-1,2-dione 90 C5H6O2 - 2.630 2.510 4.840 - 
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tR 
(min) a Pyrolysis product 

SI 
(%)b 

Molecular 
formula 

Relative abundance (%) 
Roots Flowers Leaves Bark Twigs 

8.009 4,5-dimethyloctane 83 C10H22 4.780 - - - - 
8.812 ethenyl propanoate 79 C5H8O2 - - - 0.230 - 
8.951 5-methylfuran-2-carbaldehyde 84 C6H6O2 0.410 - - 0.540 - 
9.063 3-methylcyclopent-2-en-1-one 93 C6H8O 0.280 - - 0.390 - 

10.960 2-hydroxy-3-methylcyclopent-2-en-1-
one 

88 C6H8O2 - 1.410 3.120 1.590 1.450 

11.013 2-hydroxy-3-methylcyclopent-2-en-1-
one 

97 C6H8O2 1.440 - - - - 

12.773 4-methoxyphenol (p-cresol) 96 C7H8O2 - 1.530 - - - 
13.277 cyclopropylmethanol 88 C4H8O 1.200 0.770 0.740 0.830 1.030 
13.370 3-methylbutyl 2-methylpropanoate 80 C9H18O2 0.410 0.480 - - - 
13.690 3-hydroxy-2-methylpyran-4-one 89 C6H6O3 - - - 0.320 - 
13.802 3-ethyl-2-hydroxycyclopent-2-en-1-

one 
89 C7H10O2 0.530 0.800 0.420 0.430 0.600 

14.272 1,4-dioxaspiro[2.4]heptan-5-one 80 C5H6O3 0.430 - - - - 
15.130 7-methyl-1,4-dioxaspiro[2.4]heptan-5-

one 
87 C6H8O3 0.610 - - 0.570 - 

17.024 1,4:3,6-dianhydro-α-D-glucopyranose 91 C6H8O4 0.590 - - 0.660 - 
17.185 2,3-dihydro-1-benzofuran 91 C8H8O - 3.980 1.620 0.540 - 
17.330 2,3-anhydro-D-mannosan 91 C6H8O4 0.260 - - 0.720 - 
27.036 6,7-dimethoxy-1-[(E)-2-

phenylethenyl]-1,2,3,4-
tetrahydroisoquinoline 

77 C19H21NO2 0.220 - - - 0.260 

30.117 3H-[1]benzofuro[3,2-d]pyrimidin-4-
one 

77 C10H6N2O2 - - - 0.520 0.370 

31.110 tetradecanoic acid 91 C14H28O2 - - - - 0.920 
32.728 7,11,15-trimethyl-3-

methylidenehexadec-1-ene 
94 C20H38 - - 3.680 - - 

33.651 7,11,15-trimethyl-3-
methylidenehexadec-1-ene 

89 C20H38 - - 1.680 - - 

35.045 (E)-octadec-6-enyl acetate 90 C20H38O2 - 2.790 - - - 
35.527 hexadecenoic acid 94 C16H32O2 2.400 7.920 7.560 6.060 6.170 
39.482 octadecanoic acid 93 C18H36O2 1.850 9.290 6.250 5.860 5.930 
46.895 dotriacontane 94 C32H66 - - 0.510 - 0.620 
48.570 tetracontane 88 C40H82 - 1.390 0.890 - 0.240 
52.731 dotriacontane 95 C32H66 - 8.470 3.830 - 3.010 

 Total 64.810 86.530 74.260 73.160 69.700 
 Lignin G 

12.806 guaiacol 97 C7H8O2 4.370 - 2.800 2.700 3.450 
16.006 4-methylguaiacol 96 C8H10O2 1.960 - 0.860 1.770 2.050 
18.545 4-ethylguaiacol 94 C9H12O2 0.740 - - 0.400 0.570 
19.697 4-vinylguaiacol 93 C9H10O2 4.840 0.670 2.650 1.880 3.920 
20.821 eugenol 94 C10H12O2 1.070 - 0.330 0.470 0.860 
21.092 4-propylguaiacol 89 C10H14O2 0.240 - - 0.480 - 
22.280 cis-isoeugenol 83 C10H12O2 1.190 - - - 1.030 
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tR 
(min) a Pyrolysis product 

SI 
(%)b 

Molecular 
formula 

Relative abundance (%) 
Roots Flowers Leaves Bark Twigs 

23.508 trans-isoeugenol 95 C10H12O2 3.120 - 1.100 1.330 2.480 
24.584 acetoguaiacone 96 C9H10O3 0.810 - - - 0.190 
25.603 guaiacylacetone 92 C10H12O3 0.670 - - - 0.880 
29.322 (E)-4-(3-hydroxyprop-1-en-1-yl)-2-

methoxyphenol 
91 C10H12O3 0.640 - - - 0.320 

30.973 (E)-4-(3-hydroxyprop-1-en-1-yl)-2-
methoxyphenol 

92 C10H12O3 6.940 - - 1.210 3.800 

 Total 26.590 0.670 7.740 10.240 19.550 
 Lignin H 

9.731 phenol 98 C6H6O 0.650 2.770 2.260 1.760 1.460 
11.901 2-methylphenol 94 C7H8O - 0.660 0.450 0.650 11.893 
12.642 p-cresol 96 C7H8O 0.820 1.550 1.690 2.220 12.579 

 Total 1.470 4.980 4.400 4.630 25.932 
 Lignin S 

20.707 syringol 94 C8H10O3 0.810 - 1.710 0.630 0.950 
23.320 4-methylsyringol 90 C9H12O3 0.350 - 0.560 - 0.510 
26.422 4-vinylsyringol 93 C11H14O4 0.980 - 2.560 3.110 1.270 
28.507 cis-4-propenylsyringol 83 C11H14O3 0.170 - - 0.330 - 
28.720 syringaldehyde 92 C9H10O4 0.210 - - - - 
29.782 trans-4-propenylsyringol 92 C11H14O3 0.560 - 1.060 0.530 0.990 
31.320 syringylacetone 92 C12H16O4 - - - - 0.410 

 Total 3.080 0.000 5.890 4.600 4.130 
 Extractive and others 

6.380 o-xylene 92 C8H10 - - 0.570 - - 
10.169 2,2-diethyl-3-methyl-1,3-oxazolidine 88 C8H17NO 0.680 - - 0.450 - 
16.419 2-(hydroxymethyl)-2-nitropropane-

1,3-diol 
83 C4H9NO5 - - - 1.760 - 

19.262 1H-indole 92 C8H7N - 1.250 1.470 - - 
21.897 3-methyl-1H-indole 96 C9H9N - - 0.400 0.410 - 
26.275 3,4-diacetyloxy-6,8-

dioxabicyclo[3.2.1]octan-2-yl acetate 
82 C12H16O8 - - - 1.310 - 

27.026 pentadecan-1-ol 85 C15H32O - - - 0.210 - 
32.85 3,7,11,15-tetramethylhexadec-2-ene 94 C20H40 - - 0.500 - - 

34.833 (Z)-18-octadec-9-enolide 93 C18H32O2 - 0.460 - - - 
34.963 (8Z)-1-oxacycloheptadec-8-en-2-one 91 C16H28O2 - 1.820 - - - 
35.188 (Z)-18-octadec-9-enolide 90 C18H32O2 - 2.730 - - - 
38.401 phytol (alkenol) 96 C20H40O - - 0.400 0.630  
38.995 (9Z,12Z,15Z)-octadeca-9,12,15-

trienoic acid 
85 C18H30O2 - - - 0.530 - 

39.068 (7Z,10Z,13Z)-hexadeca-7,10,13-trienal 90 C16H26O - - 0.930 - - 
39.88 hexadecanamide 88 C16H33NO - - 0.660 - - 

44.976 6,7-dimethoxy-1-phenyl-3,4-
dihydroisoquinoline 

61 C17H17NO2 - 0.630 - 0.950 - 

45.688 2,6,10,15,19,23-pentamethyl-2,6,18,22-
tetracosatetraen-10,15-diol 

86 C30H54O2 - - - - 1.330 
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tR 
(min) a Pyrolysis product 

SI 
(%)b 

Molecular 
formula 

Relative abundance (%) 
Roots Flowers Leaves Bark Twigs 

48.224 (E)-3,3'-dimethoxy-4,4'-
dihydroxystilbene 

91 C16H16O4 1.510 - - - 0.970 

48.284 methyl 2-phenylquinoline-7-
carboxylate 

67 C17H13NO2 - - - 0.830 - 

49.421 clionasterol 93 C29H50O 1.870 - - - - 
50.815 squalene 95 C30H50 - - 0.500 - - 
50.404 heptacosyl heptafluorobutyrate 95 C31H55F7O2 - - - - 0.530 

 Total 4.060 6.890 5.430 7.080 2.830 
a SI (%) = Similarity index based on NIST 2017 library (%) 
b tR (min) = retention time in minutes 

 
hemicellulose contents in the hardwood are 39–53 and 
19–36%, respectively, while lignin is 17–24%. Meanwhile, 
the percentages of cellulose and hemicellulose in the 
herbaceous plants are 24–50 and 12–38%, respectively, 
whereas lignin is 6–29% [24]. 

Based on Table 1, carbohydrates generate several 
classes of compounds during pyrolysis, such as anhydrous 
sugars, carbonyls, lactones, furans, pyrans, carboxylic 
acids, and esters [17]. The examples of anhydrous sugars 
are 1,4:3,6-dianhydro-α-D-glucopyranose and 2,3-
anhydro-D-mannosan, whereas those of carbonyls are 2-
oxopropanal and butane-2,3-dione. 

During the Py-GCMS analysis, lignin is fragmented 
into its monomers: H (p-hydroxyphenyl unit), G 
(guaiacyl unit), and S (syringyl unit). The concentration 
of lignin and its monomeric composition change between 
plant species, tissues, cell types, and different cell wall 
layers during development [25]. Based on the relative 
abundance (%) of lignin monomers, among the 5 
botanical parts of E. crista-galli, the twigs have the highest 
total lignin content (45.59%), followed by roots (23.56%), 
bark (18.26%), and leaves (18.03%), while flowers have the 
lowest total lignin content (5.56%). Lignin accumulates in 
the cell walls of specialized cell types to enable plants to 
stand upright and conduct water and minerals [26]. Twigs 
provide mechanical support and transport water, 
carbohydrates, and nutrients [27]. This explains why the 
twigs have the highest total lignin content among the 
other botanical parts of E. crista-galli. 

Py-GC/MS provides a complete overview of global 
metabolite fingerprints to characterize botanical parts of 

E. crista-galli. Through pattern recognition analysis, the 
multivariate data obtained from Py-GC/MS analysis can 
be useful to provide information on how each botanical 
part of E. crista-galli is different from one another based 
on the metabolite fingerprint. Therefore, we coupled the 
Py-GC/MS results with multivariate analysis in the next 
step. 

Multivariate analysis is concerned with datasets 
having several response variables for each observational 
or experimental. The commonly used multivariate data 
analysis for pattern recognition are PCA and HCA. 
These are examples of unsupervised learning techniques 
in which the objective is to identify previously unknown 
structures in the data set, as well as to identify clusters in 
a given dataset without using class membership 
information in the calculations [28]. 

Multivariate Analysis 

Multivariate analysis with all pyrolysis products 
PCA is a statistical method that can be used to 

visualize information in a data set by describing how 
each sample differs from another, which variables 
contribute significantly to this difference, as well as to 
identify sample patterns. In our research, in order to 
easily identify which metabolite contribute to the 
similarity or differences between 5 botanical parts of E. 
crista-galli based, we use the relative abundance data of 
metabolites as variables for PCA analysis, as done by 
several previous studies [29]. 

PCA minimizes the data dimension by creating the 
so-called principal components (PCs), which are linear 
combinations of the variables in the data set to 
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summarize the data [30]. Fig. 2(a). shows the scree plot, 
which is a line plot of the principal components along 
with the percentage of explained variance from the 
principal component analysis of the data set. Cross-
validation was subjected to the data set in order to 
determine the number of PCs that should be retained in 
order to account for most of the data variability. The 
result from cross-validation suggests that at least the first 
three PCs should be retained to fulfill a variance of 80% 
(Fig. 2(b)). 

Fig. 3 shows the score plot of the botanical parts of 
E. crista-galli on PC.1, PC.2, and PC.3. PC.1 accounts for 
36.5% of the total variance, while PC.2 27.2% and the PC.3 
20.3%. Together, the first three PCs explain 84% of the 
total variance. Each PC can be described by the origin 

variables (Rts). Variables described the best in each PC 
can be identified by the correlation coefficient and the 
coordinates of the botanical parts on a PC. Correlation 
coefficients are calculated for all the variables, followed 
by testing the significance of each correlation coefficient 
and sorting the variables from the most to the less 
correlated. The most significant variables then describe 
each PC; such a method is beneficial for interpreting the 
dimensions with many variables [20]. Table 2 shows a 
list of significantly correlated variables to PC.1, 2, and 3 
from the PCA. 

According to Table 2, eugenol, 4-ethylguaiacol, 
trans-isoeugenol, and (E)-4-(3-hydroxyprop-1-en-1-
yl)-2-methoxyphenol are pyrolysates that have a positive 
correlation to PC.1. Therefore, samples with a high score 

 
Fig 2. (a) Scree plot and (b) box plot of cumulative variances resulted from leave-one-out cross-validation 

 
Fig 3. PCA score plot of botanical parts of E. crista-galli on PC.1, PC.2, and PC.3 
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Table 2. List of significantly correlated variables to PC.1, PC.2, and PC.3 
tr (min) Corr. p-value Pyrolysis product Origin 

PC.1 
20.821000 0.979400 0.003541 eugenol Lignin-G 
18.545000 0.978600 0.003747 4-ethylguaiacol Lignin-G 
23.508000 0.970400 0.006087 trans-isoeugenol Lignin-G 
30.973000 0.934900 0.019742 (E)-4-(3-hydroxyprop-1-en-1-yl)-2-methoxyphenol Lignin G 

9.731000 -0.992500 0.000776 phenol Lignin-H 
PC.2 

6.268000 0.974000 0.005015 1-(acetyloxy)-2-propanone Linear ketone derivatives 
PC.3 

26.422000 0.924300 0.024734 4-vinylsyringol Lignin-S 
13.370000 -0.966000 0.007472 3-methylbutyl 2-methylpropanoate   Linear ketone derivatives 

 
on PC.1 will have a high relative abundance of these 
pyrolysis products. On the other hand, phenol has a 
negative correlation to PC.1. Thus, any sample with a high 
score on PC.1 will have a low relative abundance of that 
pyrolysis product. For PC.2, only 1-(acetyloxy)-2-
propanone has a significant positive correlation to the 
second latent variable. Meanwhile, for PC.3, 4-
vinylsyringol and 3-methylbutyl 2-methylpropanoate are 
positively and negatively correlated to the third latent 
variable, respectively. 

The PCA score plot (Fig. 3) shows that roots have 
the highest score on PC.1, followed by twigs, bark, leaves, 
and flowers. Revering to Table 2, most of the significantly 
correlated variables on PC.1 come from the pyrolysis 
products of lignin G. Roots have the highest score on 
PC.1, while flowers have the lowest score. Thus, roots are 
characterized by high lignin G content, whereas flowers 
are low lignin G content, which is also confirmed by Table 
1. Similarly, since the bark owns a high score on PC.2, it 
has the highest relative abundance of 1-(acetyloxy)-2-
propanone, whereas twigs have the lowest relative 
abundance of this pyrolysis product. 

Visualization provided by PCA score plots may 
facilitate clustering in pyrolysis product data. Nonetheless, 
PCA does not explicitly define clusters. More formal 
approaches can be used by clustering methods. Cluster 
analysis divides observations into groups that are related 
to one another. In terms of specific characteristics, each 
group or cluster is homogeneous and should be distinct 
from others. The closeness of two objects is expressed by 

similarity or dissimilarity, which can be computed by 
mathematical methods, and eventually displayed in a 
dendrogram based on the features of individual objects 
[30]. HCPC is a clustering approach that allows to 
combine principal component method, hierarchical 
clustering, and partitioning clustering method to 
identify clusters within a data set. The combination of 
the principal component method along with the 
clustering method is useful in a situation where the data 
set contains multiple continuous variables. The PCA can 
be used to reduce the dimension of the data, and then 
clustering can be performed on the PCA result [15]. 

From the PCA and LOOCV analysis, at least the 
first three PCs should be retained to cover 80% of the 
variance (Fig. 2). Therefore, we performed the HCPC 
analysis from the first three (84% total variance) and 
four principal components (100% total variance). Fig. 4 
shows the dendrogram of botanical parts of E. crista-galli 
resulting from HCPC analysis. 

HCPC analysis from the first three and four 
principal components shows that the botanical parts of 
E. crista-galli are divided into three different clusters. Fig. 
4 show that in HCPC analysis with the first three PCs, 
cluster 1 consists of flower, cluster 2 consists of leaves 
and bark, and cluster 3 consists of twig and root, whereas 
in HCPC analysis with four PCs, Cluster 1 consists of 
flowers and leaves, cluster 2 consists of twigs and cluster 
3 consists of roots and bark. Since the first four PCs 
cover 100% variability, HCPC analysis from the first four 
PCs is used to cluster botanical parts of E. crista-galli. 
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Fig 4. Hierarchical clustering on the factor map of botanical parts of Erythrina crista-galli with (a) three PCs and (b) 
four PCs. Clusters 1, 2, and 3 are denoted by pink, green, and yellow, respectively 

Table 3. Variables that describe the most each cluster 
tR 

(min) 
Mean in 
category 

Overall 
mean p-value Pyrolysis product Origin 

Cluster 1 
19.2620 1.3600 0.5440 0.046681 1H-indole Unknown 

Cluster 2 
50.4040 0.5300 0.1060 0.045500 heptacosyl heptafluorobutyrate Extractive/Unknown? 

45.6880 1.3300 0.2660 0.045500 2,6,10,15,19,23-pentamethyl-2,6,18,22-
tetracosatetraen-10,15-diol 

Unknown 

31.3200 0.4100 0.0820 0.045500 syringylacetone Lignin-S 
31.1100 0.9200 0.1840 0.045500 tetradecanoic acid Linear ketone derivatives 
11.9010 11.8900 2.7306 0.045795 2-methylphenol Lignin-H 
2.9180 4.8400 1.4280 0.046366 2,5-dihydrofuran Furan derivatives 

12.6420 12.5700 3.7718 0.046617 p-cresol Lignin-H 
2.4720 6.4700 2.4040 0.047257 2,3-butanedione Linear ketone derivatives 

Cluster 3 
15.1300 0.5900 0.2360 0.045707 7-methyl-1,4-dioxaspiro[2.4]heptan-5-one Lactone derivatives 

17.0240 0.6250 0.2500 0.046065 (1S,3R,6R,7R,9R)-2,5,8-
trioxatricyclo[4.2.1.03,7]nonan-9-ol 

Anhydro sugars 

4.6030 2.2950 1.4200 0.046812 methyl 2-oxopropanoate Linear ketone derivatives 
8.9510 0.4750 0.1900 0.048895 5-methylfuran-2-carbaldehyde Cyclopentenone derivatives 

 
Table 3 shows a list of variables that describe the 

most exact cluster. Variables that are significantly 
associated with specific clusters have higher mean 
category values than the overall mean. Thus, it could be 
said that cluster one (i.e., flowers and leaves) is 
characterized by the higher content of 1H-indole 
pyrolysate. 1H-indole is assumed to be a minor pyrolysis 
product that originated from protein [31] or extractive as 
an alkaloid after fragmentation of the pyrolysis process 
and was detected by Py-GC/MS [32]. 1H-Indole is 
produced by the pyrolysis of the amino acid tryptophan. 

It undergoes thermal degradation at a temperature 
above 800 °C. Three main pyrolysates of indole are 
phenylacetonitrile, 2- methylbenzonitrile, and 3-
methylbenzonitrile which formed due to the opening of 
the pyrrole ring [25]. Since, in our research, the pyrolysis 
was performed at the temperature of 500 °C, the indole 
might not undergo a pyrolytic reaction. That’s why 1H-
indole (retention time, tR = 19.267 min) and 3-methyl-1-
H-indole (tR = 21.897 min) pyrolysate are still detected. 
Those pyrolysates might also indicate the presence of 
indole alkaloids such as 1H-indole-3-propanamide, 
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abrine, and hypaphorine (Fig. 5) that has been identified 
in Erythrina genus [33]. Since indole pyrolysate is 
associated with the presence of indole alkaloids, the 
flowers and leaves contain a higher amount of indole 
alkaloids compared to the other clusters. 

Other pyrolysates that could indicate the presence of 
alkaloids are 6,7-dimethoxy-1-phenyl-3,4-
dihydroisoquinoline (tR = 44.976 min) and methyl 2-
phenylquinoline-7-carboxylate (tR = 48.284 min). 
Isoquinoline is one compound that is very stable at 
elevated temperatures. It undergoes pyrolysis at a 
temperature above 900 °C to produce benzene, toluene, 
naphthalene, phenanthrene, and anthracene, as well as 
the isomer of the other quinoline, indole, and several 
nitriles, including benzonitrile, and several isomers of 
cyanostyrene and cyanonaphthalene [25]. 

Cluster 2 (i.e., twigs) is characterized by a higher 
relative abundance of heptacosyl heptafluorobutyrate, 
2,6,10,15,19,23-pentamethyl-2,6,18,22-tetracosatetraen-
10,15-diol, syringylacetone, tetradecanoic acid, 2-
methylphenol, 2,5-dihydrofuran, p-cresol, and 2,3-
butanedione pyrolysate. Heptacosyl heptafluorobutyrate 
and 2,6,10,15,19,23-pentamethyl-2,6,18,22-
tetracosatetraen-10,15-diol were detected at the end of 
pyrogram as minor pyrolysis products from amino acids 
of lignocellulose biomass samples [34]. Cluster 3 (i.e, 
roots and barks) is characterized by a higher relative 
abundance of 7-methyl-1,4-dioxaspiro[2.4]heptan-5-one, 
(1S,3R,6R,7R,9R)-2,5,8-trioxatricyclo[4.2.1.03,7]nonan-
9-ol, methyl 2-oxopropanoate, and 5-methylfuran-2-
carbaldehyde pyrolysate. 

Tables 2 and 3 show that the distribution of samples  
 

in the score plot of PC.1, PC.2, and PC.3, as well as the 
clustering, are mainly influenced by the polysaccharide 
and lignin content in those samples. This is mainly true 
since polysaccharides and lignin are relatively abundant 
compared to extractives in higher plants, whether in 
softwood, hardwood, or even in herbaceous plants [24]. 

Multivariate analysis with only extractive pyrolisate 
The second principal component analysis was 

performed on the relative abundance (%) of extractive 
pyrolysates. Fig. 6 shows the score plot of the samples for 
the second PCA. 

For the second principal component analysis, PC.1 
and PC.2 account for 37.8 and 31.9% of the total 
variance, respectively, while PC.3 contributes to 20.2% 
of the total variance. Together the first three PCs account 
for 89.9% of the total variance. The analysis shows that 
phytol (tR = 38.401 min) is the variable that significantly 
correlated to PC.1 (corr. = 0.938, p val. = 0.0179). Since 
bark has the highest score on PC.1, therefore it has the 
highest relative abundance of phytol. 

Indole (tR = 19.262 min) is the pyrolysate that is 
significantly correlated to PC.2 (corr. = −0.949, p-value 
= 0.0136) and the correlation of indole with PC.2 is 
negative. Thus, samples with the smallest score in PC.2 
(i.e., leaves and flowers) have the highest relative 
abundance of this pyrolysate. (Z)-18-Octadec-9-enolide, 
(8Z)-1-oxacycloheptadec-8-en-2-one, and (Z)-18-
Octadec-9-enolide are pyrolysates that significantly 
correlated to PC.3 with correlation value of −0.925. Since 
the correlation value is negative, indicating samples that 
have a positive value on PC.3 will have a small relative 
abundance of those pyrolysates. 

 
Fig 5. Indole alkaloids identified in Erythrina 
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Fig 6. Score plot of botanical parts of E. crista-galli for the second principal component analysis 

 
■ CONCLUSION 

Py-GC/MS analysis can be used in conjunction with 
multivariate data analysis to characterize the botanical 
parts of E. crista-galli. The Py-GC/MS shows that most 
pyrolysis products or pyrolysate are originated from 
polysaccharides and lignin. PCA shows that the roots of 
E. crista-galli is characterized by the highest relative 
abundance of lignin G, while the flowers have the least 
relative abundance of lignin G. Hierarchical cluster 
analysis shows that the botanical parts of E. crista-galli are 
clustered in three different clusters based on their 
similarity. Cluster 1 consists of flowers and leaves and is 
characterized by the higher content of indole pyrolysate. 
Cluster 2 consist of twigs and characterized by higher 
relative abundance of heptacosyl heptafluorobutyrate, 
2,6,10,15,19,23-pentamethyl-2,6,18,22-tetracosatetraen-
10,15-diol, syringylacetone, tetradecanoic acid, 2-
methylphenol, 2,5-dihydrofuran, p-cresol, and 2,3-
butanedione pyrolysate, and cluster 3 consist of roots and 
barks is characterized with higher relative abundance of 
7-methyl-1,4-dioxaspiro[2.4]heptan-5-one, 
(1S,3R,6R,7R,9R)-2,5,8-trioxatricyclo[4.2.1.03,7]nonan-
9-ol, methyl 2-oxopropanoate, and 5-methylfuran-2-
carbaldehyde pyrolysate. 
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