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seashells distributed in Indonesia located in the Kei Islands, Southeast Maluku. During

Received: July 21, 2022 the course of our continuing search for biologically active substances from Indonesia
Accepted: November 14, 2022 seashells, seven steroids have been isolated from the n-hexane fraction of A. striata and
DOI: 10.22146/ijc.76438 they were identified as 7B-hydroxy-sitosterol (1), campesterol (2), f-sitosterol (3),

cholesterol (4), 5a,8a-epidioxycholest-6-en-3-f-o0l (5), 7-keto-cholesterol (6), and 7a-
hydroxy-cholesterol (7). The structure was identified by spectroscopic methods including
2D NMR techniques, FTIR, HRTOFMS, and chemical shift comparison with previously
reported spectral data. Compounds 1-7 were evaluated for their cytotoxic effects against
MCEF-7 breast cancer cells and showed weak or no anticancer activity.
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= INTRODUCTION antioxidant and anti-inflammation agents against DPPH
and COX-1 with the ICs, values of 0.91 and 0.93 pg/mL
(DPPH), 1.16 and 1.19 pg/mL (COX-1), respectively [6].

The Atactodea striata, known as Mas Ngur shells

Sterol belongs to steroid group and is widely
distributed in plants, animals, and marines [1]. Marine is

known as a source of interesting secondary metabolites,

. . in I ia, fth hell longi
especially as a natural resource of sterols. Several studies in Indonesia, are one of the seashell groups belonging to

indicate that sterols, isolated from marine products, the mollusc phylum, geographically distributed in the

exhibit several bioactivities such as anti-inflammation, Indo-Pacific from East Africa, including Madagascar

antimicrobial, anti-HIV, and anticancer [2-5]. Several and the Red Sea, to eastern Polynesia, to northern Japan,
and also distributed in Indonesia located in the Kei
Islands, Southeast Maluku [7-8]. A. striata are small,

short-lived bivalves, have a high population, and are

sterols with various structures have been isolated from the
seashells of Villorita cyprinoides, which are two new
cholestane type (22E),(24'E)-24',24*"dihomocholesta-
5,22,24'-trien-3B-ol and (22E)-24'-homocholesta-5,22-
dien-(3p,24'B)-diol showed interesting bioactivity as

usually found in the intertidal zone along sandy beaches
[9]. Previously reported that secondary metabolites have
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been isolated from Mas Ngur Shells are vicenin-2 and
apigenin. Both vicenin-2 and apigenin showed potent
cytotoxic activity against breast cancer cells: MCEF-7,
MDA-MB-231, and Hs578T [10-12].

In our continuous search for biologically active
compounds from marine sources, we have isolated two
known stigmastane-type steroids (1-2), one known
campestane-type steroid (3), and four known cholestane-
type steroids (4-7) from the n-hexane fraction of A.
striata. Compounds 1-7 showed weak activity and no
cytotoxic activity against MCF-7 breast cancer cells
through in vitro assay. Here, we report the isolation and
structure elucidation of compounds 1-7 along with their
cytotoxic activity against MCF-7 breast cancer cells.

m EXPERIMENTAL SECTION
Materials

The meat of Atactodea striata was collected in Ohoi,
Kei Island, Southeast Maluku, Indonesia in June 2019.
The animal sample was identified and classified by Deep
Sea Research Center BRIN, with a voucher B-
1209/111/D1/2/2022.

Instrumentation

IR spectra were recorded by Perkin Elmer Spectrum
100 FTIR spectrometer (Shelton, Connecticut, USA)
using a NaCl plate. High-resolution mass spectra (HR-
TOFMS) were determined on a Waters Xevo Q-TOF
direct probe/MS system, utilizing ESI mode and
microchannel plates MCPs detector (Milford, MS, USA).
The NMR spectra were recorded on JEOL JNM-
ECX500R/S1 spectrometer (Tokyo, Japan) at 500 MHz for
'"H and 125 MHz for ’C with TMS as an internal standard.
The column chromatography was conducted on silica gel
60 (70-230 and 230-400 mesh, Merck, Darmstadyt,
Germany). The TLC analysis was implemented with silica
GFass (Merck, 0.25 mm) and spot detection was obtained
by spraying with 10% H,SO, in EtOH, followed by heating
and irradiating under ultraviolet-visible light (A 254 and
365 nm).

Procedure

Extraction and isolation
Dried meat of Mas Ngur shells (A. striata) 1.2 kg was

extracted with ethanol (10 L) at room temperature for
3 d and then concentrated under vacuum to yield EtOH
(407.7 g). The
suspended in H,O and then partitioned with n-hexane,
EtOAc and n-BuOH.

The n-hexane fraction (168.8 g) was subjected to

extract concentrated extract was

vacuum liquid chromatography in silica gel 60 using a
gradient of elution of n-hexane-EtOAc-MeOH (10%
stepwise) to obtain eight fractions (A-H) combined
according to TLC profile. Fraction B (10.2g) was
chromatographed on a column of silica gel, eluted with
a gradient of elution of n-hexane-EtOAc-MeOH (10%
stepwise) to give thirteen subfractions (B1-B13) combined
based on TLC control. Fraction B3 and B4 were combined
(921.9 mg) and then chromatographed on a column of
silica gel, eluted with a gradient of eluent of n-hexane:
EtOAc (9:1) to obtain 1 (62.2 mg), n-hexane:EtOAc (7:3)
to obtain 2 (12.5 mg), n-hexane:EtOAc (8:2) to obtain 3
(14.7 mg), n-hexane:EtOAc (6:4) to obtain 4 (11.8 mg).
Fraction B7 (408.5mg) was separated using column
chromatography on silica gel (230-400 mesh) and eluted
using 1% gradient of elution of #-hexane:EtOAc to yield 5
(15.2 mg). Fractions B8 and B9 were combined (943.4 mg)
and then separated using column chromatography on
silica gel (230-400 mesh) eluted with n-hexane:DCM:
EtOAc (8:1:1) to give ten subfractions (B8.9a-j). Fractions
B8.9g-h were combined (23.1 mg) and then separated
using column chromatography on silica gel (230-
400 mesh) eluted with n-hexane:DCM:EtOAc (7:2:1) to
yield 6 (6.8 mg). Fractions C and D were combined
(8.1 g) then chromatographed on a column of silica gel
(70-230 mesh), eluted with a gradient of n-hexane-
EtOAc-MeOH (10% stepwise) to give ten subfractions
(CD1-10). Fraction CD4 (263.4 mg) was separated using
column chromatography on silica gel (230-400 mesh)
eluted using 1% gradient of elution of n-hexane:EtOAc
to give nine subfractions (CD4.a-i). Fraction CD4.i
(35 mg) was separated using column chromatography on
silica gel (230-400 mesh) eluted with n-hexane:acetone
(9:1) to obtain 7 (4.4 mg).

7B-Hydroxy-sitosterol (1). White solid, IR vi.x 3409,
2853, 1458, 1084 cm™'; '"H-NMR (CDCl;, 500 MHz), 6y
(ppm): 1.18 (1H, m, H-1a), 1.89 (1H, m, H-1b), 1.85 (1H,
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m, H-2a), 1.56 (1H, m, H-2b), 3.53 (1H, m, H-3), 2.28
(2H, m, H-4), 5.35 (1H, d, ] = 3.5 Hz, H-6), 4.01 (1H, d, J
=3.5Hz, H-7),1.93 (1H, m, H-8), 0.98 (1H, m, H-9), 1.51
(1H, 2H, H-11), 1.19 (1H, m, H-12a), 2.03 (1H, m, H-12b),
1.00 (1H, m, H-14), 1.13 (1H, m, H-15a), 1.61 (1H, m, H-
15b), 1.35 (1H, m, H-16a), 1.86 (1H, m, H-16b), 1.10 (1H,
m, H-17), 0.68 (3H, s, CH;-18), 1.01 (3H, s, CH;-19), 1.37
(1H, m, H-20), 0.99 (3H, d, ] = 6.0 Hz, CH;-21), 1.04 (1H,
m, H-22), 1.20 (2H, m, H-23), 0.97 (1H, m, H-24a), 1.70
(1H, m, H-24b), 1.35 (1H, m, H-25),0.82 (3H, d, ] = 4.0 Hz,
CH;-26),0.79 (3H, d, J= 6.5 Hz, CH;-27), 1.27 (2H, m, H-
28), 0.83 (3H, t, ] = 6.5 Hz, CH;-29); “C-NMR (CDCl;,
125 MHz) see Table 1; HRTOF-MS (positive ion mode)
m/z431.3669 [M+H]*, (calculated C,0Hs,0,, m/z 431.3660).
B-Sitosterol (2). White amorphous solid, IR v 3409,
2853, 1459, 1084 cm™}; 'H-NMR (CDCls, 500 MHz) 8y
(ppm): 1.18 (1H, m, H-1a), 1.89 (1H, m, H-1b), 1.85 (1H,
m, H-2a), 1.56 (1H, m, H-2b), 3.53 (1H, m, H-3), 2.28
(2H, m, H-4), 5.35 (1H, d, ] = 3.5 Hz, H-6), 1.53 (2H, m,
H-7), 1.93 (1H, m, H-8), 0.98 (1H, m, H-9), 1.51 (2H, m,
H-11), 1.19 (1H, m, H-12a), 2.03 (1H, m, H-12b), 1.00
(1H, m, H-14), 1.13 (1H, m, H-15a), 1.61 (1H, m, H-15b),
1.35 (1H, m, H-16a), 1.86 (1H, m, H-16b), 1.10 (1H, m,
H-17), 0.68 (3H, s, CH;-18), 1.01 (3H, s, CH;-19), 1.37
(1H, m, H-20), 0.99 (3H, d, ] = 6.0 Hz, CH3-21), 1.04 (1H,
m, H-22a), 1.35 (1H, m, H-22b), 1.20 (2H, m, H-23), 0.97
(1H, m, H-24a), 1.70 (1H, m, H-24b), 1.35 (1H, m, H-25),
0.82 (3H, d, ] = 6.5 Hz, CH;-26), 0.79 (3H, d, ] = 6.5 Hz,
CH;-27),1.27 (2H, m, H-28), 0.83 (3H, t, ] = 6.5 Hz, CH:-
29); BC-NMR (CDCl;, 125 MHz) see Table 1; HRTOEF-
MS (positive ion mode) m/z 415.3744 [M+H]*, (calculated
CyHs,0, m/z 415.3790).

Campesterol (3). White waxy solid, IR Vm.x 3380, 2890,
1459, 1084 cm™'; '"H-NMR (CDCl;, 500 MHz) 8y (ppm):
1.15 (1H, m, H-1a), 1.89 (1H, m, H-1b), 1.85 (1H, m, H-
2a), 1.56 (1H, m, H-2b), 3.53 (1H, m, H-3), 2.28 (2H, m,
H-4),5.34 (1H, d,J=5.0 Hz, H-6), 1.53 (2H, m, H-7), 1.93
(1H, m, H-8), 0.98 (1H, m, H-9), 1.51 (2H, m, H-11), 1.19
(1H, m, H-12a), 2.03 (1H, m, H-12b), 1.00 (1H, m, H-14),
1.13 (1H, m, H-15a), 1.61 (1H, m, H-15b), 1.35 (1H, m,
H-16a), 1.86 (1H, m, H-16b), 1.10 (1H, m, H-17), 0.68
(3H, s, CHs-18), 1.00 (3H, s, CH;-19), 1.37 (1H, m, H-20),
0.92 (3H, d, J = 7.0 Hz, CH;-21), 1.04 (1H, m, H-22a), 1.35
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(1H, m, H-22b), 1.20 (2H, m, H-23), 0.97 (1H, m, H-24),
1.70 (1H, m, H-25), 0.82 (3H, d, ] = 6.5 Hz, CH;-26), 0.85
(3H, d, ] = 6.5 Hz, CH;-27), 0.84 (3H, d, J = 6.5 Hz, CH;-
28); BC-NMR (CDCls, 125 MHz) see Table 1; HRTOE-
MS (positive ion mode) m/z401.3744 [M+H]",
(calculated CysHyO, m/z 401.3790).

Cholesterol (4). White amorphous solid, IR Vpax 3409,
2853, 1459, 1084 cm™'; '"H-NMR (CDCl;, 500 MHz) 84
(ppm): 1.15 (1H, m, H-1a), 1.83 (1H, m, H-1b), 1.81 (1H,
m, H-2a), 1.56 (1H, m, H-2b), 3.53 (1H, m, H-3), 2.28
(2H, m, H-4), 5.34 (1H, d, ] = 5.5 Hz, H-6), 1.58 (2H, m,
H-7),1.93 (1H, m, H-8), 1.93 (1H, m, H-9), 1.51 (2H, m,
H-11), 1.16 (1H, m, H-12a), 2.00 (1H, m, H-12b), 1.04
(1H, m, H-14), 1.13 (1H, m, H-15a), 1.77 (1H, m, H-
15b), 1.85 (2H, H-16), 1.10 (1H, m, H-17), 0.66 (3H, s,
CHs-18), 0.99 (3H, s, CH;-19), 1.36 (1H, m, H-20), 0.90
(3H, d, ] = 6.5 Hz, CH;-21), 1.06 (1H, m, H-22a), 1.32
(1H, m, H-22b), 1.25 (2H, m, H-23), 0.94 (2H, m, H-24),
1.80 (1H, m, H-25), 0.85 (3H, s, CH3-26), 0.83 (3H, s,
CH;-27);"C-NMR (CDCl;, 125 MHz) see Table 1;
HRTOF-MS (positive ion mode) m/z 387.3669 [M+H]*,
(calculated C,;H,,0, m/z 387.3680).
5a,8a-Epidioxycholest-6-en-3-B-ol (5). White solid,
IR Vmax 3383, 2866, 1459, 1070, 930 cm™}; 'H-NMR
(CDCls, 500 MHz) 84 (ppm): 1.95 (1H, m, H-1a), 1.68
(1H, m, H-1b), 1.51 (m, H-2a), 1.82 (1H, m, H-2b), 3.93
(1H, m, H-3), 1.90 (1H, m, H-4a), 2.10 (H-4b), 6.22 (1H,
d, J = 8.5 Hz, H-6), 6.49 (1H, d, ] = 8.5 Hz, H-7), 1.48
(1H, m, H-9), 1.01 (1H, m, H-11a), 1.60 (1H, m, H-11b),
1.20 (2H, m, H-12), 1.57 (1H, m, H-14), 1.21 (1H, m, H-
15a), 1.50 (1H, m, H-15b), 1.42 (2H, m, H-16), 1.95 (1H,
m, H-17), 0.78 (3H, s, CH;-18), 0.85 (3H, s, CH;-19),
1.32 (1H, m, H-20), 0.88 (3H, d, J = 6.5 Hz, CH;-21), 1.51
(2H, m, H-22), 1.25 (2H, m, H-23), 1.33 (2H, m, H-24),
1.49 (1H, m, H-25),0.85 (3H, d, ] = 6.5 Hz, CH3-26), 0.84
(3H, d, J= 6.5 Hz, CH;-27); *C-NMR (CDCl;, 125 MHz)
see Table 1; HRTOF-MS (positive ion mode) /2 439.3188
[M+Na]*, (calculated C,;H44O3Na, m/z 439.3188).
7-keto-cholesterol (6). White solid, IR vy 3430, 2853,
1674 cm™; "H-NMR (CDCl;, 500 MHz) 8y (ppm): 1.15
(1H, m, H-1a), 1.83 (1H, m, H-1b), 1.81 (1H, m, H-2a),
1.56 (1H, m, H-2b), 3.67 (1H, m, H-3), 2.50 (1H, m, H-
4a), 2.38 (1H, m, H-4b), 5.68 (1H, d, J = 2.0 Hz, H-6),
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2.23 (1H, dd, J = 10.5 and 8.5 Hz, H-8), 0.97 (1H, m, H-
9), 1.51 (2H, m, H-11), 1.16 (1H, m, H-12a), 2.00 (1H, m,
H-12b), 1.03 (1H, m, H-14), 1.13 (1H, m, H-15a), 1.76
(1H, m, H-15b), 1.33 (1H, m, H-16a), 1.85 (1H, m, H-
16b), 1.10 (1H, m, H-17), 0.67 (3H, s, CH,-18), 1.18 (3H,
s, CH;5-19), 1.35 (1H, m, H-20), 0.90 (3H, d, ] = 6.5 Hz,
CH;-21), 1.06 (1H, m, H-22a), 1.32 (1H, m, H-22b), 1.25
(2H, m, H-23), 0.95 (1H, m, H-24a), 1.80 (1H, m, H-24b),
1.37 (1H, m, H-25), 0.84 (3H, d, ] = 6.5 Hz, CH3-26), 0.86
(3H, d, ] = 6.5 Hz, CH;-27); *C-NMR (CDCls, 125 MHz)
see Table 1; HRTOF-MS (positive ion mode) m/z
401.3439 [M+H]*, (calculated C,;Hys50,, m/z 401.3420).
7a-Hydroxy-cholesterol (7). White solid, IR vma 3430,
2850 cm™, 'TH-NMR (CDCl;, 500 MHz) 8y (ppm): 1.13
(1H, m, H-1a), 2.02 (1H, m, H-1b), 1.52 (1H, m, H-2a),
1.82 (1H, m, H-2b), 3.57 (1H, m, H-3), 2.33 (2H, m, H-4),
5.58 (1H, d, ] = 5.5 Hz, H-6), 3.83 (1H, m, H-7), 1.39 (1H,
m, H-8), 1.04 (1H, m, H-9), 1.51 (2H, m, H-11), 1.02 (2H,
m, H-12), 1.16 (1H, m, H-14a), 1.43 (1H, m, H-14b), 1.80
(1H, m, H-15a), 1.29 (1H, m, H-15b), 1.30 (2H, m, H-16)
1.41 (1H, m, H-17),1.00 (3H, s, CH3-18), 0.66 (3H, s, CH:-
19), 1.35 (1H, m, H-20), 0.92 (3H, d, ] = 6.5 Hz, CH;-21),
1.05 (1H, m, H-22a), 1.86 (1H, m, H-22b), 1.15 (1H, m,
H-23a), 1.14 (1H, m, H-23b), 1.15 (2H, m, H-24), 1.44
(1H, m, H-25), 0.86 (3H, d, ] = 6.5 Hz, CH3-26), 0.84 (3H,
d, ] = 6.5 Hz, CH3-27); ®C-NMR (CDCl;, 125 MHz) see
Table 1; HRTOF-MS (positive ion mode) m/z 403.1793
[M+H]", (calculated C,;H4,0,, m/z 403.1793).

Cytotoxic activity test by PrestoBlue assay
The cytotoxicity of all isolated compounds against
MCF-7 human breast cancer cells was measured using the

PrestoBlue cells viability assay [13]. The cells were
maintained in a Roswell Park Memorial Institute
(RPMI) medium supplemented with 10% (v/v) Fetal
Bovine Serum (FBS) and 1 puL/mL antibiotic. Cultures
were incubated at 37°C in a humidified atmosphere of
5% CO,. The cells were seeded in 96-well microliter
plates at 1.7 x 10* cells per well. After 24 h, compounds
1-7 were separately added to the wells. After 96 h, cell
viability was determined by measuring the metabolic
conversion of resazurin substrate into pink fluorescent
resorufin product resulting from the reduction in viable
cells. The PrestoBlue assay results were read using a
multimode reader at 570 nm. ICs, values were taken
from the plotted graph of the percentage of living cells
compared to control (%), receiving DMSO, versus the
tested concentration of compounds (ug/mL). The ICs
values mean concentration required for 50% growth
inhibition. PrestoBlue assay and analysis were run in
triplicate and averaged. The crude extract of ethanol
(407.7 g), n-hexane (168.8 g), EtOAc (1.7 g), and n-
butanol (42.2 g) were tested for their cytotoxic activity
against MCF-7 breast cancer cells and showed cytotoxic
activity with ICsy values of were 450.90, 176.02, 580.32
and 5,088.12 ug/mL, respectively.

m RESULTS AND DISCUSSION

The n-hexane extract of A. striata was separated
and purified using the column chromatography method
repeatedly, to obtain compounds 1-7 (Fig. 1).

Compound 1 was obtained as a white solid with the
yield of mass 62.2 mg (6.74%) of B3-4 fraction (921.9 mg).

o HO "10H
6 7

Fig 1. Structures of steroids 1-7
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Result of HRTOF-MS spectra (Fig. S1), obtained the
molecular weight of 1 [M+H]* m/z 431.3669 (calculated
m/z 431.3680) C2H500;
indicating five degrees of unsaturation, consisting of 1

with molecular formula
double bound and tetracyclic ring system. The FTIR
spectrum of 1 (Fig. S2) showed the absorption of the
hydroxyl group (3409 cm™), CH sp’ (2853 cm™ and
1458 cm™) and C-O stretching (1084 cm™). The 'H-NMR
spectrum of 1 (Fig. S3) showed the presence of two
tertiary methyl groups at du 0.68 (s, CHs-18) and 1.01 (s,
CHs-19), three secondary methyl groups at 0.79 (d, ] = 6.5,
CHs-27), 0.82 (d, ] = 6.5, CH;-26) and 0.99 (d, ] = 6.0,
CH;-21), one primary methyl group at 0.83 (t, ] = 6.5,
CHs5-29) indicating the presence of sitosterol groups [14],
ten methylene protons sp’ and also seven methine protons,
two oxygenated methine protons at 8y 3.53 (m, H-3), 4.01
(d, J = 3.5, H-7), and one olefinic methine at 8y 5.35 (d, J
= 3.5, H-6). The “C (Fig. S4) and DEPT 135° (Fig. S5)
NMR spectrum of compound 1 showed 29 signals of
carbons, presence of six methyl carbons sp’ at . 12.0 (C-
29),12.1 (C-18),18.9 (C-21),19.1 (C-27),19.5 (C-19), and
20.0 (C-26), ten methylene carbons sp’, seven methine
carbons, two oxygenated methine carbons at 6. 71.9 (C-
3); 75.0 (C-7), one olefinic methine carbon at §. 121.9 (C-
6), two quaternary carbons sp’ at 8. 36.6 (C-10), 45.8 (C-
13) and one quaternary carbon olefinic at §. 140.9 (C-5).
The HMBC correlation of 1 (Fig. S7) showed the
correlation of H-3 (8y 3.53) to C-4 (8. 42.4), C-2 (8. 31.8),
and C-1 (8. 37.4), correlation of H-6 (84 5.35) to C-8 (6.
31.8), C-10 (8. 36.6) and C-4 (. 42.4), correlation between
H-21 (81 0.99) to C-17 (8 56.1), C-20 (8. 36.3), and C-22
(8. 34.0), correlation of H-25 (8 1.70) with C-26 (8. 20.0)
and C-27 (8. 19.1), correlation between H-29 (6y 0.83) to
C-28 (8. 23.2) and C-24 (42.5), correlation of H-18 (dn
0.68) to C-12 (8. 39.9) and C-13 (45.9), H-19 (8x 1.01) to
C-10 (8. 36.6) and C-11 (21.2) showed the characteristic
of tetracyclic of stigmastane-type steroid. The presence of
hydroxyl group at C-7 showed by correlation of H-7 (8u
4.01) to C-8 (8. 31.8), C-6 (8. 121.9) and C-5 (4. 140.9).
The cross peak of "H-'"H-COSY (Fig. S8) spectra observed
that H1/H2/H3/H4 and H6/H7/HS, indicate that hydroxy
group at C-3 and C-7 also confirm that double bond at C-
5/C-6, observed that H25/H24/H28/H29 confirm that
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primary methyl group at C-29, HI17/20/21 and
H26/H25/H27 indicated that secondary methyl group at
C-21, C-26, and C-27. A comparison with the previous
NMR data of 1 with B-sitosterol [15] revealed that the
structures of the two compounds were very similar,
except for C-7, the P oriented of hydroxyl at C-7
confirmed with the literature [16]; thus, compound 1
was identified as 7P-hydroxy-sitosterol.

Compound 2 was obtained as a white solid, with the
yield of the mass 14.7 mg (1.59%) from B3-4 fraction
(921.9 mg). The result of HRTOF-MS spectra (Fig. S9)
obtained molecular weight of 2 [M+H]* m/z 415.3744,
(calculated m/z415.3790), with molecular formula
C2Hs00, which required five degrees of unsaturation
consisting of 1 double bound and tetracyclic ring system.
The FTIR spectrum of 2 (Fig. S10) showed the
absorption of the hydroxyl group (3409 cm™), CH sp’
(2870 and 1459 cm™), and C-O stretching (1084 cm™).
The 'H, C, and DEPT 135° NMR spectrum of 3 (Fig.
$11-S13) similar with 1, the main difference was that 2
was not substituted with hydroxyl at C-7, proved by the
absence of an oxygenated methine (. 75.0) replaced by
methylene carbon sp® (8. 32.0). The selected HMBC
correlation (Fig. 2) of 2 showed the correlation of H-3
(61 3.53) to C-4 (8. 42.4), C-2 (8 31.6 ppm) and C-1 (5.
37.2 ppm), correlation of H-6 (8y 5.35) to C-7 (4. 32.0),
C-8 (8. 32.0); C-10 (8. 36.6) and C-4 (8. 42.4), correlation
between H-21 (81 0.99) to C-17 (8. 56.1), C-20 (8. 36.3),
and C-22 (4. 34.0), H-25 (84 1.70) to C-26 (8. 20.0) and
C-27 (8¢ 19.1), correlation of H-29 (6y 0.83) with C-28
(8: 23.2) and C-24 (42.5), correlation CH;-18 (8x 0.68)
to C-12 (8¢ 39.9 ppm) and C-13 (45.8 ppm), CH3-19 (8u
1.01) to C-10 (6. 36.6) and C-11 (21.1) showed the
characteristic of tetracyclic of stigmastane-type steroid.
The cross peak of "H-'"H COSY spectra (Fig. 2) observed
that H1/H2/H3/H4 indicate that hydroxy group at C-3,
observed that H6/H7/H8 confirm that double bond at
C5/C6, H25/H24/H28/H29 confirm that primary
methyl at C-29; H17/20/21 and H26/H25/H27 indicated
that secondary methyl group at C21, C-26, and C-27.
Compound 2 was confirmed by data comparison with
previously isolated compound and identified as -
sitosterol [15].
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Fig 2. Selected HMBC and 'H-"H-COSY Correlations for 1 and 2

Compound 3 was obtained as a white waxy solid,
with the yield of mass 12.2 mg (1.36%) from B3-4 fraction
(921.9 mg). Result of HRTOF-MS spectra (Fig. S17),
obtained molecular weight of 3 [M+H]* m/z 401.3744,
(calculated m/z 401.3790) with molecular formula C,sH,50,
which required five degrees of unsaturation consisting of
1 double bound and tetracyclic ring system. The FTIR
spectrum of 3 (Fig S.18) showed the absorption of the
hydroxyl group (3380 cm™), CH sp® (2890 and 1459 cm™),
and C-O stretching (1084 cm™). The "H-NMR (Fig. S19)
spectrum of compound 3 showed the presence of two
tertiary methyl groups at 8u 0.68 (s, CHs-18) and 1.00 (s,
CHj5-19), four secondary methyl groups at 8y 0.82 (d, ] =
6.5, CH;-27), 0.84 (d, J = 6.5, CH;-26), 0.85 (d, J = 6.5,
CH;-28) and 0.92 (d, J=7.0, CH;-21), ten methylene
protons sp’, seven methine protons sp’, one oxygenated
methine proton at 8y 3.53 (m, H-3), and one olefinic
methine at 8y 5.34 (br.d, ] = 5.0, H-6). The “C (Fig. S20)
and DEPT 135° (Fig. S21) NMR spectra of compound 3
showed 28 signals of carbons, presence of six methyl sp’
carbons at 6. 11.9 (C-18), 18.8 (C-21), 19.4 (C-26, C-19),
22.6 (C-27), 22.8 (C-28), ten methylene sp’ carbons, seven
methine sp’ carbons, one oxygenated methine carbon at
8. 71.9 (C-3), one olefinic methine carbon at §. 121.8 (C-
6), two quaternary sp’ carbons at 8. 36.6 (C-10), 42.3 (C-
13) and one quaternary olefinic carbon at d. 140.8 (C-5).
Compound 3 was confirmed with data from the literature
identified as a campesterol [17].

Compound 4 was obtained as a white solid, with the
yield of mass 152 mg (1.65%) from B3-4 fraction
(921.9 mg). The result of HRTOF-MS spectra (Fig. S22),
obtained molecular weight of 4 [M+H]" m/z 387.3669,
(calculated m/z 387.3680),
CyyHiO, which required five degrees of unsaturation

with molecular formula

consisting of 1 double bound and tetracyclic ring system.
The FTIR spectrum of 4 (Fig. S23) showed the
absorption of the hydroxyl group (3409 cm™), CH sp’
(2853 and 1459 cm™), and C-O stretching (1084 cm™).
The 'H, °C, and DEPT 135° NMR spectrum of 4 similar
with 2, the main difference was that 4 was not
substituted with methyl at C-24. The '"H-NMR spectrum
(Fig. S24) of compound 4 showed the presence of two
tertiary methyl groups at 8y 0.66 (s, CHs-18), and 0.99
(s, CH3-19), three secondary methyl groups at 64 0.83 (d,
J = 6.5, CH;-27), 0.85 (d, ] = 6.5, CH3-26), and 0.90 (d, J
= 6.5, CH;-21), eleven sp’ methylene protons, and also
six sp’ methine protons, one oxygenated methine proton
at 8y 3.53 (m, H-3), and one olefinic methine at 8y 5.34
(d, J = 5.5, H-6). The "C-NMR spectrum (Fig. S25) of
compound 4 showed 27 signals of carbons, presence of
five sp’ methyl carbons at 8. 11.9 (C-18), 18.8 (C-21),
19.5 (C-19), 22.6 (C-26), and 22.9 (C-27), eleven sp’
methylene carbons, six sp’ methine carbons at &. 31.9,
50.2, 56.9, 56.2, 36.2 and 28.1, one oxygenated methine
carbon at 8. 71.9 (C-3), one olefinic methine carbon at
Oc 121.8 (C-6), two sp’ quaternary carbons at 6. 36.6 (C-
10), 42.4 (C-13) and one olefinic quaternary carbon at .
140.8 (C-5). Compound 4 was confirmed with data from
the literature identified as a cholesterol [18].
Compound 5 was obtained as a white solid, with
the yield of mass 15.2 mg (3.72%) from B7 fraction
(408.5 mg). The result of HRTOF-MS spectra (Fig. S26),
obtained molecular weight of 5 [M+Na]* m/z 439.3188,
(calculated m/z439.3188), with molecular formula
CHuO;, which required six degrees of unsaturation
consisting of 1 double bound and pentacyclic ring
system. The FTIR of 5 (Fig. S27) spectrum showed the
absorption of the hydroxyl group (3383 cm™), CH sp’
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(2866 and 1459 cm™), C-O stretching (1070 cm™), and C-
0O-0 of peroxide stretching (930 cm™). Compound 5 have
same skeleton with 4, the main difference was 5 have
double bond at C-6 and C-7, addition of one peroxide
cyclic at C-5 and C-8. The '"H-NMR spectrum (Fig. S28)
of compound 5 showed the presence of two tertiary
methyl groups at Oy 0.78 (s, CH;-18), and 0.85 (s, CHs-
19), three secondary methyl groups at 8y 0.84 (d, ] = 6.5,
CH-27), 0.85 (d, J = 6.5, CH5-26), and 0.88 (d, ] = 6.5,
CHj;-21), ten methylene protons sp’, five methine protons
sp’, one oxygenated methine proton at 8y 3.93 (m, H-3),
and two olefinic methine protons at 6y 6.22 (d, ] = 8.5, H-
7) and 6.49 (d, ] = 8.5, H-6). The "C-NMR (Fig. S29) and
DEPT 135° (Fig. S30) spectra of compound 5 showed 27
carbon signals, presence of five methyl sp’ carbons at &
12.7 (C-18), 18.2 (C-21),18.6 (C-19), 22.6 (C-26), and 22.8
(C-27), ten methylene sp’ carbons, five methine sp’
carbons, one oxygenated methine carbon at 8. 66.5 (C-3),
two olefinic methine carbons at §. 130.8 (C-7), 135.5 (C-
6), two quaternary sp’ carbons at 8. 37.0 (C-10), 44.8 (C-
13) and two oxygenated quaternary carbons at 8. 79.5 (C-
8), 82.2 (C-5). Compound 5 was confirmed by data
comparison with previously isolated compound,
identified as a 5a,8a-epidioxycholest-6-en-3p-ol [19].
Compound 6 was obtained as a white solid, with the
yield of mass 6.8 mg (29.44%) from B8.9g-h fraction
(23.1 mg). The result of HRTOF-MS spectra (Fig. S31),
obtained molecular weight of 6 [M+H]" m/z 401.3439,
(calculated m/z 401.3420),
C»HuO,, which required six degrees of unsaturation

with molecular formula

consisting of 1 double bound, 1 carbonyl, and tetracyclic
ring system. The FTIR spectrum of 6 (Fig. $32) showed
the absorption of the hydroxyl group (3430 cm™), CH sp’
(2853 cm™), and C=O0 stretching (1674 cm™"). Compound
6 have same skeleton with 4, the main difference that 6
was substituted with carbonyl at C-7, the presence of
carbonyl confirmed with »C-NMR spectrum of 6 at &
202.4 ppm. The 'H-NMR (Fig. $33) spectrum of compound
6 showed the presence of two tertiary methyl groups at 8y
0.67 (s, CH;-18), and 1.18 (s, CH;-19), three secondary
methyl groups at 8y 0.84 (d, ] = 6.5, CH3-27), 0.86 (d, ] =
6.5, CHs-26), and 0.90 (d, ] = 6.5, CH3-21), ten methylene
sp’ protons, six methine sp’ protons, one oxygenated
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methine proton at 0y 3.67 (m, H-3), and one olefinic
methine at 8y 5.68 (d, J = 2.0, H-6). The >C-NMR (Fig.
S34) and DEPT 135° (Fig. S35) spectrum of compound
6 showed 27 signals of carbons, presence of five methyl
sp’ carbons at § 12.0 (C-18), 17.9 (C-19), 18.9 (C-21),
22.7 (C-26), and 22.9 (C-27), ten methylene sp’ carbons,
six methine sp’ carbons, one oxygenated methine carbon
at 8. 70.6 (C-3), one olefinic methine carbon at §. 126.2
(C-6), two quaternary sp’ carbons at o 38.4 (C-10), 43.2
(C-13), one olefinic quaternary carbon at §. 165.3 (C-5),
and one quaternary carbon of carbonyl at 6. 202.4 (C-5).
Compound 6 was confirmed with data from the
literature identified as a 7-keto-cholesterol [20].
Compound 7 was obtained as a white solid, with
the yield of mass 4.4 mg (12.57%) from CD4i fraction
(35 mg). The result of HRTOF-MS spectra (Fig. S36),
obtained molecular weight of 7 [M+H]* m/z 403.1793,
(calculated m/z403.1793), with molecular formula
Cx7Hs60,, which required five degrees of unsaturation
consisting of 1 double bound and tetracyclic ring system.
The FTIR spectrum of 7 (Fig. S37), showed the
absorption of the hydroxyl (3430 cm™) and CH sp’
(2850 cm™) groups. Compound 7 have same skeleton
with 4, the main difference that 7 was substituted with
hydroxyl at C-7. The 'H-NMR (Fig. S38) spectrum of
compound 7 showed the presence of two tertiary methyl
groups at 8y 0.66 (s, CH;-18) and 1.00 (s, CH3-19), three
secondary methyl groups at 8y 0.84 (d, J = 6.5, CH;-26),
0.86 (d, J=6.5, CH3-27) and 0.92 (d, ] = 6.5, CH;-21), ten
methylene sp’ protons, six methine sp’ protons, two
oxygenated methine protons at 8y 3.57 (m, H-3) and
3.83 (bs, H-7), and one olefinic methine at 8y 5.58 (d, J
= 5.5, H-6). The "C-NMR (Fig. S39) and DEPT 135°
(Fig. S40) spectra (Fig. S33) of compound 7 showed 27
signals of carbons, presence of five methyl sp’ carbon at
0. 11.9 (C-18), 18.3 (C-19), 18.8 (C-21), 22.6 (C-27), and
22.9 (C-26), ten methylene sp’ carbons, six methine sp’
carbons, two oxygenated methine carbons at 8. 65.4 (C-
7) and 70.6 (C-3), one olefinic methine carbon at §.123.9
(C-6), two quaternary sp’ carbons at 8. 37.4 (C-10) and
42.1 (C-13), one olefinic quaternary carbon at d. 146.3
(C-5). A comparison with the previous NMR data of 7
with 7B-hydroxy-cholesterol [21], that the structures of
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Table 1. *C NMR data (125 MHz for *C, in CDCl;) for 1-7

Position 1 2 3 4 5 6 7
Carbon 0. (mult.) O, (mult.) S. (mult.) O. (mult.) O. (mult.) O. (mult.) S. (mult.)
1 37.4(t) 37.2 (1) 37.3 (1) 37.3(t) 34.7 (t) 36.4 (t) 39.5 (1)
2 31.8 (t) 31.6 (1) 31.7 (t) 31.7 (t) 30.1 (t) 31.2 (1) 314 (1)
3 71.9 (d) 71.8 (d) 71.9 (d) 71.9 (d) 66.5 (d) 70.6 (d) 71.4 (d)
4 42.4(t) 42.4 (t) 42.3 (t) 42.4 (t) 37.0 (t) 41.9 () 42.0 ()
5 140.9 (s) 140.9 (s) 140.8 (s) 140.8 (s) 82.2 (s) 165.2 (s) 146.3 (s)
6 121.9 (d) 121.9 (d) 121.8 (d) 121.8 (d) 135.5 (d) 126.2 (d) 123.9 (d)
7 75.0 (d) 32.0 (1) 31.9 (t) 319 (t) 130.8 (t) 202.4 (s) 65.4 (s)
8 31.8 (d) 32.0(d) 31.9 (d) 31.9 (d) 79.5 (s) 459 (d) 37.5(d)
9 50.2 (d) 50.2 (d) 50.1 (d) 50.2 (d) 51.1(d) 50.0 (d) 49.5 (d)
10 36.6 (s) 36.6 (s) 36.6 (s) 36.6 (s) 37.0 (s) 38.4 (s) 37.4 (s)
11 21.2 (t) 21.1 (t) 21.1(t) 21.2 () 23.4 (1) 21.3 (t) 20.7 (t)
12 39.9 (t) 39.9 (1) 39.5 (t) 39.9 (t) 39.5 (t) 38.8 (1) 36.2 (1)
13 45.9 (s) 45.8 (s) 42.3 (s) 42.4 (s) 44.8 (s) 432 (s) 42.3 (s)
14 459 (d) 56.9 (d) 56.8 (d) 56.9 (d) 51.7 (d) 50.0 (d) 55.9 (d)
15 24.4 (t) 24.4 (t) 24.3 (t) 24.4 (t) 20.6 (t) 26.4 (t) 24.3 (t)
16 28.4 (t) 28.4 (t) 28.3 (t) 28.3 (t) 28.3 (t) 28.7 (t) 28.3 (t)
17 56.1 (d) 56.1 (d) 56.2 (d) 56.2 (d) 56.5 (d) 54.9 (d) 55.9 (d)
18 12.1(q) 12.1 (q) 11.9 (q) 11.9 (q) 12.7 (q) 12.0 (q) 11.9 (q)
19 19.5(q) 19.5(q) 194 (q) 19.5(q) 18.6 (q) 17.3 (q) 18.3 (q)
20 36.3 (d) 36.3 (d) 36.3 (d) 36.2 (d) 35.3 (d) 35.8 (d) 35.8 (d)
21 18.9 (q) 18.9 (q) 18.8 (q) 18.8 (q) 18.2 (q) 18.9 (q) 18.8 (q)
22 34.0 (t) 34.0 (1) 34.0 (t) 35.9 (t) 36.0 (t) 36.3 (1) 37.0 (1)
23 26.1 (t) 26.1 (t) 23.9 (t) 23.9 (t) 23.8 (t) 23.9 (t) 23.8 (t)
24 42.5 (t) 42.5 (t) 39.4 (t) 39.6 (t) 39.5 (t) 39.6 (1) 39.2 (1)
25 29.2 (d) 29.2 (d) 28.1 (d) 28.1(d) 28.0 (d) 28.1 (d) 28.1 (d)
26 20.0 (q) 20.0 (q) 19.4 (q) 226 (q) 22.6(q) 227 (q) 229 (q)
27 19.1 (q) 19.1 (q) 226 (q) 229 (q) 22.8(q) 229 (q) 226 (q)
28 232 (t) 232 (q) 22.8(q) ; ; - ;
29 12.0 (q) 12.0 (q) - - - - -

the two compounds were very similar, except for C-7, the
a oriented of hydroxyl at C-7 confirmed with the
literature, compound 7 was identified as a 7a-hydroxy-
cholesterol [22].

The cytotoxic activity of the steroids 1-7 was tested
against the MCF-7 cancer cell according to a method
described [13]. Cisplatin (53 pM) was used as a positive
all compounds, 5a,8a-
epidioxycholest-6-en-3p-ol (5) the highest
cytotoxic activity with ICs, value of 164.08 uM, followed
by campesterol (3), B-sitosterol (2), 73-hydroxy-sitosterol
(1), 7a-hydroxy-cholesterol (7), cholesterol (4) and 7-
keto-cholesterol (6) with ICsy of 256.36, 264.83, 282.33,

control. Among steroid

showed

439.17, 517.39, and 4246.01 pM, respectively (Table 2).
Based on the results, the cytotoxic activity value of the
steroids 1-7 against MCF-7 breast cancer cells is affected
by the skeleton type of steroids and changes in substituents
can reduce the ICs value, the resonance of double bond
at C-6, C-7, and addition of one peroxide cyclic at C-5
and C-8 of (5) significantly increased cytotoxic activity,
compared to compound 1-4, 6-7 which has double bond
at C-5 and C-6 reduced cytotoxic activity, the a and B-
oriented of hydroxyl group at C-7 of (7) and (1) gives
significant difference of cytotoxic activity with a-
oriented decreases the cytotoxic activity, the presence of
carbonyl at C-7 of (6) showed the weakest activity.
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Table 2. Cytotoxic activity of compounds 1-7 against
MCE-7 cells

Compounds ICso (uM)
7B-hydroxy-sitosterol (1) 282.33
B-Sitosterol (2) 264.83
Campesterol (3) 256.36
Cholesterol (4) 517.39
5a,8a-epidioxycholest-6-en-3[3-ol (5) 164.08
7-keto-cholesterol (6) 4246.01
7a-hydroxy-cholesterol (7) 439.17
Cisplatin* 53.00

*Positive control

m CONCLUSION

Seven steroids have been isolated from the n-hexane
fraction of Atactodea striata, two known stigmastane-type
steroids, 7P-hydroxy-sitosterol (1) and B-sitosterol (2),
one known campestane-type steroid, campesterol (3), and
four known cholestane-type steroids, cholesterol (4),
5a,8a-epidioxycholest-6-en-3-p-ol (5), 7-keto-cholesterol
(6) and 7a-hydroxy-cholesterol (7). All compounds were
firstly reported from genus Atactodea. The cytotoxic
activity of the steroids 1-7 was tested against the MCF-7
cancer cell. Compound (5) showed the highest cytotoxic
activity, followed by campesterol (3), B-sitosterol (2), 7f-
hydroxy-sitosterol (1), 7a-hydroxy-cholesterol (7),
cholesterol (4) and 7-keto-cholesterol (6). The resonance
of double bond at C-6, C-7, and addition of one peroxide
cyclic at C-5 and C-8 of (5) significantly increased
cytotoxic activity, compared to compounds 1-4, 6-7
which has double bond at C-5 and C-6 reduced cytotoxic
activity, the a and p-oriented of hydroxyl group at C-7 of
(7) and (1) gives significant difference of cytotoxic activity
with a-oriented decreases the cytotoxic activity, the
presence of carbonyl at C-7 of (6) showed the weakest
activity. One of these steroids showed weak activity (5)
and the remaining had no activity. The recommendation
for future study is the isolated steroids need further
research to determine other bioactivities including other
cytotoxic activities, such as antioxidant and anti-
inflammation activities.
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Fig §36. HRTOF-MS spectra of 7
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Fig $39. "C-NMR spectrum of 7 (125 MHz in CDCl;)
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