ISSN: 1978-9971

PROSIDING PERTEMUAN DAN PRESENTASI ILMIAH FUNGSIONAL PENGEMBANGAN TEKNOLOGI NUKLIR IX

Jakarta, 5 Nopember 2014

PUSAT TEKNOLOGI KESELAMATAN DAN METROLOGI RADIASI BADAN TENAGA NUKLIR NASIONAL

JL. LEBAK BULUS RAYA No. 49, KOTAK POS 7043 JKSKL – JAKARTA SELATAN 12070 Telp. (021) 7513906 (Hunting) Fax. : (021) 7657950 E-mail : ptkmr@batan.go.id

Diterbitkan pada Januari 2015

KATA PENGANTAR

Puji syukur kami panjatkan kehadirat Allah SWT atas karunia yang diberikan kepada

Panitia Penyelenggara, sehingga Prosiding Pertemuan dan Presentasi Ilmiah Fungsional

Pengembangan Teknologi Nuklir IX dengan tema "Keselamatan dalam Pemanfaatan IPTEK

Nuklir di Bidang Metrologi Radiasi, Kesehatan dan Lingkungan" yang dilaksanakan pada

tanggal 5 Nopember 2014, telah selesai disusun pada bulan Januari 2015.

Presentasi Ilmiah kali ini menghadirkan pembicara utama Dr. Ross A. Jeffree dari

University of Technology, Sydney dengan judul Exploratory Radioecology, in Practice, Theory

and Applications. Makalah yang masuk dan dipresentasikan dalam kegiatan ini sebanyak 45 buah

berasal dari Universitas Pakuan 3 makalah, Institut Teknologi Bandung (ITB) 1 makalah,

Universitas Islam Negeri Syarif Hidayatullah 1 makalah, PRFN 3 makalah, PTRR 1 makalah,

PSTA 4 makalah, STTN 2 makalah, PSTNT 3 makalah, PRSG 1 makalah, PKSEN 1 makalah,

PSTBM 1 makalah, PAIR 1 makalah, dan PTKMR 23 makalah

Semoga penerbitan Prosiding ini bermanfaat sebagai media untuk menyebarluaskan hasil-

hasil penelitian, pengembangan, dan pengelolaan perangkat nuklir dalam bidang keselamatan,

kesehatan, lingkungan dan metrologi radiasi serta sebagai bahan acuan dan informasi dalam

melakukan kegiatan penelitian dan pengembangan.

Panitia penyelenggara berharap semoga Prosiding ini dapat menjadi sumber informasi dan

acuan yang berguna bagi semua pihak yang memerlukannya. Sebagai penutup, Panitia

Penyelenggara menyampaikan mohon maaf atas segala kekurangan dan kesalahan dalam

penyusunan Prosiding ini dan menyampaikan penghargaan dan terimakasih yang sebesar-besarnya

kepada semua pihak yang telah ikut mensukseskan serta membantu terselenggaranya Pertemuan

dan Presentasi Ilmiah ini.

Jakarta, 7 Januari 2015

ISSN: 1978-9971

Tim Editor dan Panitia Penyelenggara

i

SAMBUTAN

KEPALA PUSAT TEKNOLOGI KESELAMATAN DAN METROLOGI RADIASI

Assalaamu'alaikum Wr. Wb.

Salam sejahtera bagi kita semua.

Dengan memanjatkan puji dan syukur kehadirat Tuhan Yang Maha Esa, saya menyambut

gembira atas penerbitan Prosiding Pertemuan dan Presentasi Ilmiah Fungsional Pengembangan

Teknologi Nuklir IX oleh Tim Editor dan Panitia Penyelenggara.

Melalui penerbitan ini, saya berharap Prosiding ini dapat dengan mudah dipahami oleh

para pemerhati iptek nuklir di bidang teknologi keselamatan dan metrologi radiasi. Selain itu, saya

juga berharap agar tulisan dan kajian ilmiah dalam Prosiding ini, yang merupakan output (luaran)

dari para pejabat fungsional Batan, bisa menjadi acuan bagi para mahasiswa, pengajar (guru, dosen,

dan pembimbing), dan ilmuwan di luar Batan, sehingga output kegiatan BATAN ini dapat

dimanfaatkan dan dirasakan oleh masyarakat.

Akhirnya, saya berharap bahwa keberadaan Prosiding ini tidak sebatas memperkaya

khasanah pengetahuan kita, namun juga dapat menjadi pedoman bagi PTKMR untuk mewujudkan

visi BATAN, Unggul di Tingkat Regional. Untuk itu, saya mengucapkan terima kasih dan

penghargaan setinggi-tingginya kepada Tim Editor dan Panitia Penyelenggara yang telah

mencurahkan tenaga dan pikirannya, serta kepada seluruh pihak yang telah mendukung penerbitan

Prosiding ini.

Wassalamu'alaikum Wr. Wb.

Jakarta, 09 Januari 2015

ISSN: 1978-9971

Kepala PTKMR,

Drs. Susetyo Trijoko, M.App.Sc

ii

SUSUNAN PENGARAH, TIM EDITOR, DAN PANITIAPENYELENGGARA PERTEMUAN DAN PRSENTASI ILMIAH FUNGSIONAL PENGEMBANGAN TEKNOLOGI NUKLIR - IX

PENGARAH

Ketua:

Drs. Susetyo Trijoko, M.App.Sc. (Kepala PTKMR-BATAN)

Anggota:

Drs. Bunawas, APU.
Prof. Drs. Eri Hiswara, M.Sc.

EDITOR DAN PENILAI MAKALAH

Ketua:

Drs. Nurman Rajagukguk

Wakil Ketua:

Dr. Mukh Syaifudin

Anggota:

Drs. Mukhlis Akhadi, APU.

Dra. C. Tuti Budiantari

Drs. Gatot Wurdiyanto, M.Eng.

Dr. Eko Pudjadi

dr. Fadil Nasir, Sp.KN.

Dra. Rini Heroe Oetami, MT. (PSTNT-BATAN)

Dr. Megga Ratnasari Pikoli (UIN Syarif Hidayatullah)

Prof. Fatma Lestari, Ph.D (FKM-UI)

Dr. Rer. Nat. Freddy Haryanto (ITB-Bandung)

PENYELENGGARA

Ketua: Teja Kisnanto, A.Md., Wakil Ketua: Fendinugroho, S.ST., Sekretaris: Dian Puji Raharti, A.Md., Bendahara: Kristina Dwi Purwanti, Seksi Persidangan: Wahyudi, S.ST., Setyo Rini, SE., Viria Agesti Suvifan, Egnes Ekaranti, A.Md., Seksi Dokumentasi: Yahya Mustofa, A.MR., Seksi Perlengkapan: Prasetya Widodo, A.Md., Rojalih., Seksi Konsumsi: Siti Ruwiyati, Indri Tristianti. (SK No. 53/KMR/VI/2014)

ISSN: 1978-9971

DAFTAR ISI

Kata	Pengantar	i
Samb	outan Kepala PTKMR	ii
Susu	nan Pengarah, Tim Editor, dan Panitia Penyelenggara	iii
Dafta	ar Isi	iv
Mak	alah Utama	
Ех	aploratory Radioecology, in Practice, Theory and Applications	A-1
	r. Ross A. Jeffree niversity of Technology, Sydney	
Mak	alah Seminar	
1.	Perhitungan Ketebalan Kontainer untuk Menjamin Keselamatan dari Paparan Radiasi pada Perangkat Brakiterapi	1
	Kristiyanti dan Tri Harjanto	
2.	Pengujian Modul SCA untuk Perekayasaan Scintigrafi	8
	Leli Yuniarsari, Sukandar, Joko Sumanto, dan Wiranto Budi Santoso	
3.	Pemantauan dan Evaluasi Radioaktivitas Gross β Air Pendingin Primer Reaktor Kartini PSTA-BATAN	18
	Atok Suhartanto dan Suparno	
4.	Penerapan Program Optimisasi Proteksi dan Keselamatan Radiasi dalam Bidang Kedokteran Nuklir	24
	Suhaedi Muhammad dan Rr.Djarwanti, RPS	
5.	Penentuan Efisiensi Detektor Geiger Muller pada Sistem Pencacah Integral terhadap Sumber Beta dan Gamma Menggunakan Tl-204 dan Cs-137	37
	Wijono dan Eko Pramono	
6.	Kalibrasi Dosimeter CaSO4:Dy Terhadap Sinar-X untuk Menghitung Dosis Radiologi Diagnostik	44
	Rofiq Syaifudin, Nina Herlina, dan Assef Firnando Firmansyah	
7.	Pemantauan Dosis Paparan Kerja di PSTNT-BATAN	52
	Rini Heroe Oetami	

ISSN: 1978-9971

8.	Pembuatan Perunut KIT RIA/IRMA di PTRR Tahun 2013	65
	Gina Mondrida, Sutari, Triningsih, Sri Setyowati, Agus Ariyanto, V. Yulianti S, Puji Widayati, Wening Lestari	
9.	Analisis Propagasi Ketidakpastian pada Penentuan Radioaktivitas Lingkungan	80
	Juni Chussetijowati dan Suhulman	
10.	Daya Infektif Campuran <i>Plasmodium berghei</i> Iradiasi dan Non-Iradiasi pada Mencit (<i>Mus musculus</i>)	94
	Teja Kisnanto, Mukh Syaifudin, Siti Nurhayati, dan Gorga Agustinus	
11.	Diferensial Leukosit Mencit (<i>Mus musculus</i>) Pasca Imunisasi Berulang dan Uji Tantang dengan <i>Plasmodium berghei</i> Iradiasi Gamma Stadium Eritrositik	103
	Tur Rahardjo, Siti Nurhayati, Mukh Syaifudin, dan Teja Kisnanto	
12.	Pemantauan Pekerja Radiasi Dengan <i>Whole Body Counter</i> Sebagai Data Dasar Dosis Radiasi Internal	114
	Sugiyana	
13.	Kajian Keselamatan dan Keamanan Sumber di Laboratorium Dosimetri Standar Sekunder BATAN	121
	B.Y. Eko Budi Jumpeno dan Egnes Ekaranti	
14.	Profil Protein <i>Escherichia coli</i> Hasil Inaktivasi Dengan Iradiasi Gamma pada Dosis 600-800 Gy	135
	Ario Putra Pamungkas dan Irawan Sugoro	
15.	Perencanaan Keselamatan dan Perlindungan Radiasi pada Ruang Operasi Brakiterapi MDR-IB-10	142
	Tri Harjanto	
16.	Pemetaan Radioaktivitas ⁴⁰ K, ²²⁶ Ra dan ²³² Th dalam Sampel Tanah dari Pulau Bangka	153
	Wahyudi, Syarbaini dan Kusdiana	
17.	Faktor Transfer ¹³⁷ Cs dari Tanah ke Daun Singkong	165
	Leli Nirwani	
18.	Optimasi Pencucian dan Pengeringan Bahan Baku Pembuatan Sintesisi ZOC-2 untuk Meminimalkan Limbah	174
	Tundjung Indrati Y, Sajima, dan Sudaryadi	

19.	Kandungan Radionuklida ²²⁶ Ra dalam Sampel Air Minum Dalam Kemasan (AMDK) Menggunakan Spektrometer Alfa	186
	Nurul Karim, Sutanto dan Asep Setiawan	
20.	Konsentrasi Stronsium-90 Dalam Biota Laut dan Susu Sapi	196
	Nur Arini Azizah, Asep Setiawan dan Sutanto	
21.	Distribusi Butiran Partikel dan Kontribusi Sumber Sedimen Dengan Pendekatan Model Matematis Sederhana	201
	Tommy Hutabarat	
22.	Perbandingan Persentase Metafase Pertama (M1) dan Kedua (M2) Sel Limfosit Darah Tepi Yang Diiradiasi Sinar Gamma Dengan Variasi Waktu Pengkulturan	211
	Masnelli Lubis dan Viria Agesti Suvifan	
23.	Sistem Akuntansi Limbah Radioaktif Terpadu di PTKMR Suhaedi Muhammad, Rr.Djarwanti,RPS, dan Farida Tusafariah	219
24.	Proliferasi Limfosit pada Organ Limpa dan Thymus Mencit Paska Inokulasi <i>P.Bergei</i> Radiasi	230
	Darlina, Enbun Ma'rufah, dan Warsih	
25.	Persentase Parasit pada Mencit (<i>Mus musculus</i>) Pasca Imunisasi Berulang dan Uji Tantang dengan <i>Plasmodium berghei</i> Iradiasi Gamma dengan <i>Adjuvant Alhidroyel</i>	239
	Tur Rahardjo	
26.	Analisis Peluruhan Samarium-153 menggunakan Sistem Pencacah Kamar Pengion Capintec CRC-7BT	247
	Eko Pramono dan Wijono	
27.	Analisis Statistik Ketidakpastian Faktor Konversi pada Sistem Gamma Counter Manual Abbot RE-0785 Menggunakan Sumber Standar I-129	256
	Sarjono dan Wijono	
28.	Penentuan Radionuklida Pemancar Gamma Dalam Sampel Air Uji Profisiensi 2012	261
	Wahyudi, Eko Pudjadi dan Muji Wiyono	
29.	Rancang Bangun Pengendali pH dan Temperatur pada Koagulator dengan Metode ON-OFF	272
	Nugroho Trisanyoto, Dwi Handoko, dan Joko Sunardi	

30.	Analisis Panas Lebih pada Modul Panel Listrik Motor Pompa JE01 AP003 Sistem Pendingin Primer RSG-GAS	284
	Teguh Sulistyo, M. Taufiq, Adin Sudirman, dan Yuyut Suraniyanto	
31.	Kalibrasi Dosimeter CaSO4:Dy Terhadap Sr-90 Untuk Menghitung Dosis Beta	297
	Rofiq Syaifudin, Sri Subandini L, dan Fendinugroho	
32.	Penetuan Konsentrasi <i>Sitochalasin B</i> Dalam Pembentukan Sel Binukleat pada Uji Mikronuklei	304
	Sofiati Purnami, Masnelli Lubis dan Yanti Lusiyanti	
33.	Variasi Suplemen Serum dalam Kultur <i>In Vitro Plasmodium falciparum</i> untuk Pengembangan Vaksin Malaria Irradiasi	313
	Siti Nurhayati dan Teja Kisnanto	
34.	Pengukuran Reaktivitas Batang Kendali Reaktor Kartini Pasca Perbaikan Reactivity Computer Type R-20A	322
	Dewita dan Marsudi	
35.	Benchmarking Program Pemantauan Radiasi Lingkungan di Beberapa Negara terhadap Pedoman IAEA	330
	Nurlaila dan Yuliastuti	
36.	Pengolahan Limbah <i>Methylen Blue</i> dengan TiO ₂ dimodifikasi Cu dan N <i>Agus Salim Afrozi, Auring R, Sulistioso GS, dan Joko Nurchamid</i>	342
37.	Pengujian <i>Automatic Exposure Control</i> (AEC) pada Pesawat Sinar-X Mamografi	352
	Dewi Kartikasari, Helfi Yuliati, Dyah Dwi Kusumawati dan Suyati	
38.	Penentuan Laju Dosis Serap Air Berkas Elektron Pesawat <i>Linac Electa Sinergy Platform</i> Mengunakan Fantom Air PTW dan 1D <i>Scanner Sun Nuclear</i>	358
	Sri Inang Sunaryati dan Nurman Rajagukguk	
39.	Benefisasi Pasir Zirkon untuk Umpan Pembuatan Zirkon <i>Opacifier</i> Sajima	366
40.	Upaya Peningkatan Derajat Keselamatan dan Kesehatan Pekerja Radiasi Farida Tusafariah, Rr.Djarwanti, RPS, dan Suhaedi Muhammad	376
41.	Uji Kontrol Kualitas Kamera Gamma Mediso AnyScan S di Pusat Teknologi Keselamatan dan Metrologi Radiasi Prasetya Widodo dan Nur Rahmah Hidayati	385

Identifikasi dan Penentuan Konsentrasi ²¹⁰ Po dalam Lumpur (<i>Sludge</i>) Hasil Industri Menggunakan Spektrometer Alfa	394
Mastika Kartika Chandra, Sutanto, dan Asep Setiawan	
Simulasi MCNPX untuk Efisiensi Pencacah Alfa-Beta dalam Pengukuran Radioaktivitas Tanah	404
Rasito, Zulfakhri, Juni Chussetijowati, dan Putu Sukmabuana	
Rancang Bangun Monitor Kebisingan di Tempat Kerja Berbasis Mikrokontroler Atmega 8	414
Muhammad Khoiri, Joko Sunardi, dan Jauhani Setiyawan	
Studi Awal Evaluasi Perbandingan Performa Algoritma Berbasis Gradient-descent, Simulated Annealing, dan Hybrid pada Kasus Optimasi Segmented-weight untuk Prism TPS	425
Yati Hardiyanti, Mohammad Haekal, Abdul Waris dan Freddy Haryanto	
	Hasil Industri Menggunakan Spektrometer Alfa Mastika Kartika Chandra, Sutanto, dan Asep Setiawan Simulasi MCNPX untuk Efisiensi Pencacah Alfa-Beta dalam Pengukuran Radioaktivitas Tanah Rasito, Zulfakhri, Juni Chussetijowati, dan Putu Sukmabuana Rancang Bangun Monitor Kebisingan di Tempat Kerja Berbasis Mikrokontroler Atmega 8 Muhammad Khoiri, Joko Sunardi, dan Jauhani Setiyawan Studi Awal Evaluasi Perbandingan Performa Algoritma Berbasis Gradient-descent, Simulated Annealing, dan Hybrid pada Kasus Optimasi Segmented-weight untuk Prism TPS Yati Hardiyanti, Mohammad Haekal, Abdul Waris dan

Jakarta, 5 Nopember 2014

UJI KONTROL KUALITAS KAMERA GAMMA MEDISO ANYSCAN S DI PUSAT TEKNOLOGI KESELAMATAN DAN METEROLOGI RADIASI

ISSN: 1978-9971

Prasetya Widodo dan Nur Rahmah Hidayati

Pusat Teknologi Keselamatan dan Metrologi Radiasi - BATAN Jalan Lebak Bulus Raya No. 49, Jakarta 12070 Email: prasetyaw@batan.go.id

ABSTRAK

UJI KONTROL KUALITAS KAMERA GAMMA MEDISO ANYSCAN S DI PUSAT TEKNOLOGI KESELAMATAN DAN METEROLOGI RADIASI. Pusat Teknologi Keselamatan dan Metrologi Radiasi (PTKMR) memiliki Kamera Gamma dengan double detector-Mediso AnyScan S yang digunakan sebagai alat diagnostik pada penelitian dan pengembangan teknik nuklir kedokteran. Kamera Gamma ini harus selalu dalam kondisi prima ketika akan digunakan sebagaimana dipersyaratkan oleh peraturan Badan Pengawas Tenaga Nuklir (BAPETEN). Untuk memastikan bahwa kamera gamma selalu dalam kondisi prima, perlu dilakukan beberapa uji kontrol kualitas (QC) pada jangka waktu tertentu dengan merujuk pada standard internasional dan rekomendasi dari pabrik pembuat. Tujuan dari artikel ini untuk menganalisis hasil uji QC yang telah dilakukan sebagai suatu langkah untuk menentukan kondisi dan unjuk kerja kamera gamma Mediso AnyScan S. Uji QC yang dilakukan diantaranya adalah uji resolusi energi intrinsik, uji keseragaman medan aliran intrinsik, uji linieritas spasial intrinsik, uji resolusi spasial sistem, dan uji pusat rotasi. Hasil uji-uji QC menunjukkan bahwa nilai yang telah diukur masih dalam rentang yang dipersyaratkan, sehingga dapat dikatakan bahwa kamera gamma Mediso AnyScan S di PTKMR dalam kondisi prima dan siap digunakan

Kata kunci : kamera gamma, kedokteran nuklir, alat diagnostik, uji kontrol kualitas,

ABSTRACT

THE CONTROL QUALITY TESTS OF GAMMA CAMERA MEDISO ANYSCAN S IN THE CENTER FOR TECHNOLOGY OF RADIATION SAFETY AND METROLOGY. The Center for Technology of Radiation Safety and Metrology has operated a dual head Gamma Camera Mediso AnyScan S as a diagnostic tool for research and development in nuclear medicine technology field. This equipment should be always in a good performance whenever will be used as required by the regulation of Nuclear Energy Regulatory Agency (BAPETEN). Hence, in order to ensure the gamma camera always in a good performance, it is important to conduct some quality control (QC) tests in a given period, by referring to international standards and recommendation from the vendor. The objective of this article is to analyse the results of QC tests, which have been done according to the reference, as a measure to determine the condition and performance of gamma camera Mediso Anyscan S. The QC test which have been done are intrinsic energy resolution, intrinsic flood field uniformity, intrinsic spatial resolution, system spatial resolution and center of rotation. The result of QC test shows that the measured value are still in the range of specifications which are required. Hence, the gamma camera Mediso AnyScan in PTKMR can be regarded in the good condition and ready for use.

Keywords: gamma camera, nuclear medicine, diagnostic equipment, quality control tests,

I. PENDAHULUAN

Kedokteran Nuklir adalah pelayanan penunjang dan/atau terapi yang memanfaatkan sumber radiasi terbuka dari disintegrasi inti radionuklida yang meliputi pelayanan diagnotik in-vivo dan in-vitro melalui pemantauan proses fisiologi, metabolisme dan terapi radiasi internal [1]. Dalam pelayanan tersebut, salah satu alat yang sering digunakan adalah kamera gamma yang berfungsi mendeteksi energi radiasi dari tubuh pasien akibat masuknya radiofarmaka yang diinjeksikan ke dalam tubuh pasien dengan tujuan untuk mendeteksi proses fisiologi yang terjadi di dalam tubuh.

Pusat Teknologi Keselamatan Radiasi (PTKMR) Metrologi saat ini memiliki kamera gamma dual head Mediso Anyscan S yang digunakan untuk kepentingan penelitian dan pengembangan dalam bidang kedokteran nuklir. Berdasarkan peraturan Kepala BAPETEN No. 17 Tahun 2012, semua peralatan yang akan digunakan dalam prosedur kedokteran nuklir harus dinyatakan dalam kondisi yang prima [2]. Oleh karena itu, Demi menjamin bahwa kamera gamma Mediso Anyscan S dapat beroperasi sesuai dengan spesifikasinya dan untuk mengetahui perubahan unjuk kerja yang terjadi pada kamera gamma Mediso Anyscan S maka dilakukan beberapa pengujian QC pada periode tertentu [3].

Tujuan dari tulisan ini yaitu menganalisis hasil kontrol kualitas yang dilakukan pada kamera gamma Mediso Anyscan S sesuai dengan acuan dari pabrik pembuat sebagai langkah untuk mengetahui kondisi dan unjuk kerja perangkat pesawat kamera gamma Mediso AnyScan S.

II. TINJAUAN PUSTAKA

Uji kontrol kualitas dan uji penerimaan (acceptance test) merupakan hal yang mutlak dilakukan pada kamera gamma sebagai alat uji diagnostik di bidang kedokteran nuklir. Pengujian-pengujian tersebut, biasanya dilakukan berdasarkan standar peraturan dan rekomendasi internasional yang berlaku seperti National Electrical Manufacturers Association (NEMA), International Electrotechnical Commission (IEC) dan International Atomic Energy Agency (IAEA). Hal ini penting untuk dilakukan dalam jangka waktu tertentu sebagaimana yang telah dipersyaratkan, untuk memenuhi standar keselamatan dan kualitas dalam pelayanan kedokteran nuklir [7].

Resolusi Energi (Energy Resolution)

Resolusi energi merupakan istilah yang digunakan untuk menggambarkan dari kamera gamma untuk kemampuan membedakan antara foton-foton yang berbeda energi [3]. Karena hamburan compton pada jaringan lunak sangat dominan pada energi yang digunakan untuk pencitraan sinar gamma, kemampuan untuk membedakan hamburan yang mencerminkan resolusi energi sistem, memiliki dampak besar pada kualitas gambar [4]. Resolusi energi

Jakarta, 5 Nopember 2014

dinyatakan sebagai persen (%) *full width half maximum* (FWHM) dari energi spesifik. Semakin kecil angka FWHM, semakin bagus resolusi energinya.

Keseragaman Aliran Medan (Flood Field Uniformity)

Kebanyakan kamera modern tidak didesain untuk uniform secara intrinsic karena penguatan resolusi spasial bisa didapatkan dengan mengorbankan keseragaman intrinsik (intrinsic uniformity). Sehingga sistem tersebut membutuhkan mekanisme koreksi uniformitas. Biasanya koreksi uniformitas melibatkan registrasi daerah puncak sinyal Z serta koordinat sinyal X dan Y yang telah dikoreksi oleh komputer. Pemantauan uniformitas kamera mungkin adalah indikator unjuk kerja kamera yang paling sensitif dan seharusnya dilakukan setiap hari sebelum pemeriksaan pasien [4].

Keseragaman intrinsik (intrinsic uniformity) adalah tanggapan sistem tanpa kolimator kepada fluks radiasi yang seragam dari suatu sumber titik (point source). Ada dua parameter uniformity yang berbeda yaitu : integral uniformity (IU) dan differential uniformity (DU). Integral uniformity merupakan ukuran variasi count density maksimum di luas wilayah yang telah didefinisikan pada detektor sintilasi sebagai input fluks gamma yang seragam ke UFOV Differential uniformity jumlah perubahan count density per satuan jarak yang telah ditetapkan ketika insiden

radiasi gamma pada detektor adalah fluks homogen di bidang pengukuran [3].

ISSN: 1978-9971

Linieritas Spasial (Spatial Linierity)

Spatial linierity adalah jumlah distorsi posisi atau perpindahan posisi foton yang diukur relatif terhadap posisi yang sebenarnya dimana foton yang terdeteksi memasuki detektor2. Spatial linierity merupakan karakteristik unjuk kerja dari kamera sintilasi yang menggambarkan jumlah distorsi spasial pada citra sehubungan dengan objek. Spatial linierity menggambarkan tingkat linieritas pada citra dari sebuah objek linier[5]. Differential linierity merupakan standar deviasi lokasi puncak terukur dari garis Absolute terbaiknya. linierity adalah pergeseran maksimum suatu puncak dari grid 2 dimensi terbaiknya [3].

Dalam sistem yang ideal sumber sinar gamma yang yang berbentuk garis lurus harus menghasilkan garis lurus pula pada citra. Penyimpangan dari garis lurus tersebut menunjukkan adanya distorsi. Karena adanya sejumlah photo multiplier tube (PMT) dalam kamera sintilasi, terdapat distorsi seperti gelombang pada citra sebuah garis lurus. Koreksi linieritas kuantitatif berhasil diselesaikan manufaktur-manufaktur oleh dengan menyimpan dalam sebuah mikroprosesor suatu algoritma koreksi yang menggeser posisi kejadian sintilasi pada arah dan jarak yang tepat untuk menghasilkan sebuah garis lurus[4].

Resolusi Spasial (Spatial Resolution)

Spatial resolution adalah ukuran dari kemampuan sistem pencitraan untuk mendeteksi dua objek yang berdekatan sebagai dua entitas yang terpisah. Spesifikasi NEMA untuk spatial resolution adalah FWHM dan Full Width at Tenth Maximum (FWTM) dari fungsi sebaran garis pada beberapa posisi dalam Central Field of View (CFOV) dan Useful Field of View (UFOV) kamera[4].

FWHM adalah penyebaran titik atau garis kurva respons pada 50 % dari puncak amplitudo pada setiap sisi puncak. FWTM yaitu penyebaran titik atau garis kurva respons pada 10 % dari puncak amplitudo pada setiap sisi puncak. UFOV ialah area detektor yang digunakan untuk pencitraan sinar gamma. Area yang ditetapkan oleh skala semua dimensi linier dari UFOV dengan faktor 75% disebut CFOV2.

Pusat Rotasi (Center of Rotation, COR)

Dalam rekonstruksi citra dari hasil proyeksi, diasumsikan bahwa matriks gambar, yang mewakili distribusi aktivitas dalam sebuah bagian, memiliki hubungan yang konstan dengan matriks data akuisisi. jika salah satu matriks bergeser terhadap yang lainnya untuk sudut akuisisi data yang berbeda, maka citra yang direkonstruksi dari data proyeksi balik (*back projection*) akan kabur karena gerakan relatif dari dua matriks [4].

Untuk merekonstruksi data proyeksi secara akurat,maka dalam algoritma rekonstruksi harus diketahui hubungan antara sumbu rotasi fisik atau mekanik dan pusat citra proyeksi. koreksi yang berhubungan dengan letak sumbu rotasi terhadap pusat citra proyeksi disebut koreksi *Center of Rotation* (COR)[6].

III. METODE

Metode yang digunakan untuk uji control kualitas kamera gamma dilakukan dengan merujuk pada standar NEMA dengan menggunakan alat kamera gamma Mediso AnyScan S dan sumber Technicium-99m dengan aktivitas yang bervariasi sesuai dengan kebutuhan pengujian.

Uji Resolusi Energi Intrinsik untuk Tc-99m (Intrinsic Energy Resolution For Tc-99m)

Pengujian dilakukan menggunakan isotop Tc-99m dengan aktivitas 1 MBq (5-10 KCount), yang dimasukan dalam *syringe* sedemikian hingga membentuk *point source*. Kemudian sumber diletakkan sejauh 5 FOV (*Field of View*) didepan muka detektor tanpa kolimator. Dilakukan akuisisi dengan protokol "*Energy Resolution Test*".

Uji Keseragaman Medan Aliran Intrinsik (Intrinsic Flood Field Uniformity)

Pengujian dilakukan menggunakan isotop Tc-99m dengan aktivitas 4 MBq, yang dimasukan dalam *syringe* sedemikian hingga

membentuk *point source*. Kemudian sumber diletakkan sejauh 5 FOV (*Field of View*) didepan muka detektor tanpa kolimator. Dilakukan akuisisi dengan protokol "*Uniformity Point Source Test Tc-99m*".

Uji Linieritas Spasial Intrinsik (*Intrinsic Spatial Linierity*)

Pengujian dilakukan menggunakan isotop Tc-99m dengan aktivitas 4 MBq, yang dimasukan dalam *syringe* sedemikian hingga membentuk *point source*. Kemudian sumber diletakkan sejauh 5 FOV (*Field of View*) didepan muka detektor tanpa kolimator yang telah dipasangi *linierity phantom*. Dilakukan akuisisi dengan protokol "*Linierity Test*".

Uji Resolusi Spasial Sistem(System Spatial Resolution)

Pengujian dilakukan menggunakan isotop Tc-99m dengan aktivitas 4 MBq, yang dimasukan dalam *syringe* sedemikian hingga membentuk *point source*. Kemudian sumber diletakkan sejauh 3-5 FOV (*Field of View*) di atas muka detektor dengan kolimator yang telah dipasangi 4 Quadrant Bar phantom. Dilakukan akuisisi dengan protokol "System Spatial Resolution".

Uji Pusat Rotasi (COR)

Pengujian dilakukan menggunakan isotop Tc-99m dengan volume 0.5 ml yang dimasukkan ke dalam *syringe* 2 ml, ganti jarum dengan jarum baru setelah isotop dimasukkan dalam *syringe*. Masukkan

syringe ke dalam source holder for COR. Dilakukan akuisisi dengan protokol "Center of Rotation Test".

IV. HASIL DAN PEMBAHASAN

Hasil dari test yang dilakukan diolah dengan menggunakan software NEMA Test yang disediakan oleh pabrik manufaktur, dapat dilihat pada Table 1, 2, 3, 4 dan 5 yang menampilkan spesifikasi uji masing-masing, beserta hasi uji yang telah dilakukan.

Tabel 1. Spesifikasi dan hasil uji resolusi energi intrinsik

Specifikaci	Hasil	Satuan	
Spesifikasi	Det-1	Det-2	Satuali
Resolusi. energi intrinsik ≤ 9,70	9,47	9,68	%

Pada pengujian resolusi energi intrinsik, nilai hasil uji yang diperoleh seharusnya lebih kecil atau sama dengan 9,7 %. Merujuk pada Tabel 1. Spesifikasi dan hasil uji intrinsic energy resolution, hasil yang didapatkan yaitu 9,47% untuk detektor 1 dan 9,68% untuk detektor 2. Sehingga dapat dikatakan bahwa hasil uji resolusi energi intrinsik untuk kedua detektor masih masuk dalam spesifikasi.

Tabel 2. Spesifikasi dan hasil uji resolusi spasial intrinsik

Spesifikasi		Hasil Tes		Satuan
		Detektor 1	Detektor 2	
Resolusi Spasial Intrinsic				
FWHM				
CFOV	≤ 3,60	3,40	3,32	mm
UFOV	≤ 3,70	3,46	3,39	mm
FWTM				
CFOV	≤ 7,20	6,65	6,48	mm
UFOV	≤ 7,40	6,75	6,61	mm

Demikian juga dengan hasil uji resolusi spasial intrinsik, dalam spesifikasi nilai FWHM pada CFOV harus lebih kecil dari atau sama dengan 3,60 mm dan pada UFOV harus lebih kecil dari atau sama dengan 3,70 mm. Selain itu nilai FWTM pada CFOV harus lebih kecil dari atau sama dengan 7,20 mm dan pada UFOV harus lebih kecil dari atau sama dengan 7,40 mm. Dari Tabel 2. Tersebut, hasil yang diperoleh pada detektor *1* adalah: nilai FWHM pada CFOV sebesar 3,40 mm kemudian pada UFOV sebesar 3,46

mm. Untuk nilai FWTM diperoleh 6,65 mm pada CFOV dan 6,75 mm pada UFOV. Selanjutnya pada detektor 2 diperoleh nilai FWHM pada CFOV sebesar 3,32 mm dan pada UFOV sebesar 3,39 mm. Kemudian untuk nilai FWTM diperoleh pada CFOV sebesar 6,48 mm dan pada UFOV sebesar 6,61 mm. Dari hasil yang telah dipaparkan dapat diketahui bahwa hasil uji resolusi spasial intrinsik masih masuk dalam spesifikasi.

Tabel 3. Spesifikasi dan hasil uji keseragaman medan aliran intrinsik

Spesifikasi		Hasil Tes		Satuan	
		Detektor 1	Detektor 2		
Keseragaman medan aliran instrinsik					
Diferensial (DU)					
CFOV	≤ 1,9	0,9	1,1	%	
UFOV	≤ 2,4	0,9	1,1	%	
Integral (IU)					
CFOV	≤ 2,4	1,2	1,4	%	
UFOV	≤ 2,9	1,2	1,5	%	

Dari Tabel 3 Spesifikasi dan hasil uji keseragaman medan aliran intrinsik, nilai IU dan DU dipersyaratkan berada dalam rentang spesifikasi yaitu pada CFOV IU harus lebih kecil dari atau sama dengan 1,9%, dan DU harus lebih kecil dari atau sama dengan 2,4%, sedangkan pada UFOV IU harus lebih kecil dari atau sama dengan 2,4% dan DU harus lebih kecil dari atau sama dengan 2,9%. Hasil uji pada detektor 1 adalah sebagai berikut : pada CFOV didapatkan nilai DU 0,9% dan IU 1,2%, sedangkan pada UFOV didapatkan nilai DU=0,9% dan IU 1,2%. Kemudian pada detektor 2 diperoleh nilai DU 1,1% pada CFOV dan 1,1% pada UFOV, dan nilai IU 1,4% pada CFOV dan 1,5% pada UFOV. Hasil uji keseragaman medan aliran intrinsik masih berada dalam jangkauan spesifikasi sehingga dapat dikatakan lolos uji.

Selanjutnya pada uji linieritas spasial intrinsik diperoleh hasil seperti pada Tabel 4,

nilai linieritas diferensial pada CFOV sebesar 0,07 mm dan pada UFOV sebesar 0,08 mm. Kemudian nilai linieritas absolut pada CFOV sebesar 0,21 mm dan pada UFOV sebesar 0,30 mm. Selanjutnya pada detektor 2 diperoleh nilai linieritas diferensial pada CFOV sebesar 0,18 mm dan pada UFOV sebesar 0,20 mm, serta nilai linieritas absolut pada CFOV sebesar 0,38 mm dan pada UFOV sebesar 0,40 mm. Hasil uji linieritas spasial intrinsik yang telah dipaparkan masih dalam rentang nilai spesifikasi yaitu linieritas diferensial pada CFOV harus lebih kecil dari atau sama dengan 0,18 mm dan pada UFOV harus lebih kecil dari atau sama dengan 0,20 mm, dan linieritas absolut pada CFOV harus kurang dari atau sama dengan 0,38 mm dan pada UFOV harus kurang dari atau sama dengan 0,40 mm.

Tabel 4. Spesifikasi dan hasil uji linieritas spasial intrinsik

Spesifikasi		Hasil Tes	
	Detektor 1	Detektor 2	
\leq 0,38	0,21	0,35	mm
\leq 0,40	0,30	0,40	mm
\leq 0,18	0,07	0,08	mm
\leq 0,20	0,08	0,12	mm
	≤ 0,40 ≤ 0,18		

Tabel 5. S	pesifikasi	dan hasil	uji center	of rotation	(COR)

Spesifikasi		Hasil Tes		Satuan
		Detektor 1	Detektor 2	
Center of Rotation (COR)	≤ 0,2	0,12	0,12	Pixel (64x64)

Dalam uji *center of rotation (COR)*, untuk detektor1 diperoleh hasil 0,12 pixel dan untuk detektor2 diperoleh nilai 0,12 pixel. Dari Tabel.5 diketahui nilai hasil uji masih dalam rentang nilai spesifikasi, sehingga dapat dikatakan kamera gamma mediso lolos uji *center of rotation (COR)*.

Meskipun hasil yang diperoleh dari uji kontrol kualitas ini rata-rata baik, akan tetapi perlu diingat bahwa uji-uji tersebut perlu dilakukan secara rutin dan berkala, mengingat dalam rekomendasi internasional disebutkan bahwa uji kontrol kualitas ini harus dilakukan dalam rentang waktu tertentu sesuai dengan spesifikasi uji masing-masing. Kendalanya adalah pada saat diluar kegiatan penelitian, uji tersebut tidak semua dapat dilakukan. Mengingat sumber Tc-99m hanya tersedia pada saat penelitian. Solusi dari permasalahan ini adalah. ketika penelitian akan dilaksanakan, uji kontrol kualitas harus sebelum dilakukan penelitian yang menggunakan kamera gamma dilaksanakan. Sehingga, pada saat dilakukan pemeriksaan diagnostik dengan kamera gamma, sudah dapat dipastikan bahwa kamera gamma tersebut dalam kondisi prima dan siap digunakan.

V. KESIMPULAN

Berdasarkan nilai-nilai yang diperoleh pada uji kontrol kualitas yang telah dilakukan, maka dapat dikatakan bahwa kamera gamma AnyScan S yang ada di PTKMR dalam kondisi prima dan siap digunakan untuk keperluan uji diagnostik, hal ini dibuktikan dengan hasil uji yang masih masuk dalam spesifikasi.

DAFTAR PUSTAKA

- 1. KEMENTERIAN KESEHATAN, Keputusan Menteri Kesehatan No. 008 /MENKES/SK/I/2009 tentang Standar Pelayanan Kedokteran Nuklir di Sarana Pelayanan Kesehatan.
- BADAN PENGAWAS TENAGA NUKLIR, Perka No. 17 Tahun 2012 tentang Keselamatan Radiasi Dalam Kedokteran Nuklir.
- 3. NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION, NEMA Standards Publication NU 1-2001, Performance Measurements of Scintillation Cameras, NEMA, 2001.
- 4. PAUL H. MURPHY, Acceptance Testing and Quality Control of Gamma Cameras, Including SPECT, Journal of Nuclear Medicine, 28, 1987, 1221-1226
- 5. INTERNATIONAL ATOMIC ENERGY AGENCY, IAEA-TECDOC-317, Quality Control of Nuclear Medicine Instruments, IAEA, 1987
- 6. MARK W. GROCH, WILLIAM D. ERWIN, Single-Photon Emission Computed Tomography in the Year 2001:

Instrumentation and Quality Control, Journal of Nuclear Medicine, 29 (March 2011), 16

7. BUSEMANN SOKOLE, E., PŁACHCÍNSKA, A., & BRITTEN, A., Acceptance testing for nuclear medicine instrumentation. European Journal of Nuclear Medicine and Molecular Imaging, 37(3), 2010, p. 672–81.

Sekretariat:

PANITIA – PPI-FPTN IX

Jakarta, 5 Nopember 2014 Pusat Teknologi Keselamatan dan Metrologi Radiasi

Badan Tenaga Nuklir Nasional

Jl. Lebak Bulus Raya No.49, PO Box 7043, JKSKL, Jakarta 12070 Telp.: (021) 7513906 (Hunting), Fax: (021) 7657950 E-mail: ptkmr@batan.go.id

