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SURPLUS PRODUCTION MODELS                                                      
AND ANALYSIS OF EXPLOITED POPULATION IN FISHERIES 

by 
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ABSTRAK 

MODEL 'SURPLUS PRODUCTION' DAN ANALISIS TERHADAP POPULASI DI 
BIDANG PERIKANAN. Didalam ilmu dinamika populasi perikanan, kelompok model 
ini dapat digolongkan ke dalam model yang paling sederhana, dalam arti mudah di-
mengerti (meski oleh kaum awam sekdipun), tidak memerlukan banyak macam data, 
serta didasari oleh pengertian matematika yang mudah. Konsep-konsep yang melan-
dasi model ini dibahas secara rinci, termasuk pula beberapa kelemahan dan keunggul-
annya bila diterapkan untuk melakukan analisis terhadap dinamika dari suatu populasi 
di bidang perikanan, Selain itu dikemukakan pula beberapa contoh penggunaan model 
tersebut, antara lain untuk perikanan lemuru di Selat Bali. 

INTRODUCTION 

Fisheries represent dynamic (time vary-
ing) system with interacting components, 
such as biology, technology, economy, 
politic, and social. Mathematical models in 
fisheries try to capture how a system works 
by expressing the interactions in terms 
of mathematical relationships. 

The simplest model in fisheries popula-
tion dynamics is the surplus yield, sur-
plus production, Schaefer models, or logis-
tic production models. Actually, this simple 
yield approach can be traced back to GRA-
HAM (1935), so that some authors prefer 
to name it as Graham-Schaefer model. 
These models consider a fish population as 
a single entity, subject to simple rules of 
simple population growth. Increasing or dec-
reasing process in biomass subsumes a num-
ber of real population processes such as tis-
sue growth and recruitment as input para-
meters and mortality as output parameter. 

Consequently, analysis of fish population

based upon these models can be made when 
only very little information, primarily on the 
catch, the population biomass, and the amount 
of fishing which usually expressed as fishing 
effort, are available. These models ignoring the 
events within a population and the growth and 
mortality of the individuals forming the 
population. 

POPULATION GROWTH FORM 

Before discussing the growth of a popula-
tion, it is necessary to define the word popu-
lation. In this paper, population defined as 
all collection group of fish of the same species 
inhabiting a particular space which enable them 
to interbreed independently. Each of 
population has its characteristic patterns of 
increase which called as population growth 
form. Two population growth forms, i.e. 
exponential growth and sigmoid growth 
forms, are important in the study of fish 
population dynamics. 

1).  Badan Penelitian Pengembangan Pertanian, Sub Balai Penelitian Perikanan Laut, Semarang. 
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1.    Exponential Population Growth Form 
Exponential growth form known also as J-

shaped, geometric, or Malthusian population 
growth. This last name is derived fron that of 
THOMAS ROBERT MALTHUS (1766-1834) 
who pointed out that all species had, 
theoritically, an ability to increase that finally 
would exceed any conceivable increase in the 
means of subsistance of those species 
(PIELOU 1974). 

Unchecked exponential growth of a 
population, i.e. the environment is unlimited in 
space, food, and other organisms not 
exerting a limiting effect, will lead to a 
population explosion. 

Let us suppose that in general, at the end of 
any unit of time there are always X times as 
many individuals as there were at the be-ginning 
of the unit of time, and let 

N0, N1,  N2,   N3,   . . .    Nt  

denote the size of the population at time 

t = 0, 1, 2, 3, . . .  t 

then, 

N1  = λN0

N2 = λN1  = λ2N0

N3 = λN2 = λ2N1 = λ2N0

.  

.  

.  
Nt = λ tN0

Thus, the size of the population at the sequence 
of times is 

0       1       2       3       . . .       t 

N0   λN0   λ2N0  λ3N0 λ tN0

which demonstrate a geometric series. The 
constant λ is known as the finite rate of 
pupulation growth. 

In the exponential population growth 
form, the population is growing exponen- 
tially or like a sum of money earning com-

pound  interest   with interest compounded 
annualy.  Then Nt, the size of the popula-
tion after t years is 

Nt=  N0 (l + r) 
t  . . .      (1) 

where r is the interest rate expressed as a 
fraction. 
Numerical example : let N0 = 1 000 be the sum 
of muney (in rupiah) saved in bank at time t = 
0, and r be the interest rate = 0.1.5 per year, 
then at time 

 
Consider again the compound interest law of  

Nt = N0 (1+r)t

If interest were compounded n times a year 
instead of annually, Eq. (1) would become 

N t = N 0 ( l  +  
n

r
) n t

and if n becomes very large, it may be 
shown that in the limit   Nt –––––► N 0  e r t

where  e = 2.71828 . . .  is the base of the 
natural (or Napierian) logarithms. 

The arithmetic plots of the exponential 
population growth demonstrate the J-shaped 
growth curve as shown in Figure 1. The con-
stant r is known as the instantaneous rate of
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Figure 1.   Exponential growth curve. 

population growth. Thus the relation bet-
ween λ and r is this : in so far as the 
equations 

λ
N0
Nt = t and e 

N0
Nt = rt  

are equivalent, it follows that λ = er or r = 
In λ, where ln λ denotes loge λ, the natural 
logarithm of λ. The rate of increase r is a 
composite parameter reflecting the differ-
ence between birth rate b, and death rate d, 
such that r = b - d (these are instantaneous 
rates). 

2. Sigmoid Population Growth Form 
The abundance of a fish species is not a 

fixed quantity and it varies from one place 
and one time to another, resulting spatial 
and  temporal   patterns.   Fluctuations  are

subject to the changing balance between 
death and birth rates and by the availability 
of resources. The other simple population 
growth form that we usually can study is 
the sigmoid curve or S-shaped form which 
describes the way in which the size of a 
pupulation approaches an asymptotic and 
fluctuates about it as the relationship 
changes between births and deaths. Mathe-
matically, the sigmoid growth form can be 
expressed in a differential equation as 

)2).....(
K

N -K 
( rN

dt

dN
=  

where 
dt

dN
= the rate of population growth 

change (in number in time), K is the popu-
lation abundance which can be supported 
by the environment (the carrying capacity), 
N is the population size, and r is the speci-
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fic growth rate. The shape of the curve 
describing the growth of N, assuming the 
sigmoid curve is valid, is shown in the 
Figure 2. 

Starting from a low N, abundance in-
crease slowly at first, then faster until the 
rate of increase drops away as N 
approaches K. The carrying capacity is the 
population abundance towards which the 
population converges as equilibrium is 
disturbed. 

The term of (
K

N -K 
) in Eq. (2) de-

scribes detrimental factors created by the 
growing population itself, i.e. whenever 

N increases, 
dt

dN
 decreases. In general, sig-

moid curve characterized by the greater and 
greater detrimental factors as the abundance 
of the population increases. The growth to

be logistic whenever detrimental 
factors are linearly proportional to the 
population size. 

SURPLUS PRODUCTION MODELS 

The basis of the production models is 
biomass regeneration, which considered 
as a single entity process, ignoring the 
events of recruitment, growth, and 
mortality of the individuals composing 
the population. These models assume that 
biomass produced over that needed for 
exact replacement is regarded as a surplus 
which can therefore be harvested. This 
first assumption can be depicted in 
Figure 3, where B(t) and B(t+1) are 
biomass at time t and t+1, B∞ is the 
biomass maximum, and YE is the 
equilibrium yield. 

 
Figure 2.  Sigmoid growth curve. 
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Figure 3.  Biomass of time = t plotted against biomass of time = t+1 to demonstrate 
the basic assumption of surplus production models. 

The second assumption is that when the 
quantity of biomass taken in the fishery 
is exactly equal to the surplus produced, 
the fishery is assumed to be in steady state 
(equilibrium), providing an equilibrium 
yield, YE. 

1. Parabolic Surplus Production Curve 
— GRAHAM'S Method 
GRAHAM (1935) postulated that under 

steady state conditions the logistic growth 
equation could apply to the biomass rege-
neration function, i.e. the rate of surplus 
production of stock (= recruitment + growth 
less natural mortality) is directly propor-
tional to its biomass and also to the differ-

ence between the actual biomass and the 
maximum  biomass  the  area  will support 

)3)........(
B

BB
 ( kB

dt

dB
∞

∞ −
=  

where 
dt

dB
  the rate of surplus production 

of the stock 
 B stock size (biomass) 

B∞  maximum biomass that could 
be supported by the environ-
ment. 

k  the instantaneous growth 
rate at small biomass. 

 t      time, conventionally in year. 
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Note: Integrating Eq. (3), the growth curve 
is the sigmoid logistic curve Verhulst (RICK-
ER 1975) 

 
where t0 is the inflection point of the curve, 

i.e. t - t0 = 0 when B = 
2

B∞
. Therfore, 

surplus production models also well known 
as logistic production models. 

Based upon the second assumption, i.e. 
when fishing remove the surplus production 
of the stock at the same rate as it is pro-
duced, it becomes the annual yield from a 
stock held in equilibrium, mathematically 
can be expressed as 

 

 
where  B BE  biomass of stock in steady 

state conditions. 
FE  rate of fishing which maintain 

the stock in equilibrium. 
YE  yield when the stock is in 

equilibrium. 

Eq. (4) demonstrates that the relation 
between equilibrium yield and equilibrium 
biomass is a parabola, i.e. YE is a parabolic 
function of BE as shown in Figure 4. The 
parabolic production curve has the inter-
cepts with horizontal axis at BE = 0 and

 
Figure 4. Equirilibrium yield (YE) against biomass 
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BE = B∞. To obtain maximal/minimal of 
this curve, basic calculus can be employed, 
i.e. by differentiating Eq. (4) and equating 
to zero resulting 

 
substituting the value of B∞ into Eq. (4) 
giving 

 

As a result, the maximum equilibrium yield 
or MSY is derived when the biomass is 
exactly half of the maximum equilibrium 
biomass, and it is equal to one-quarter of 
the maximum biomass multiplied by the 
instantaneous rate of increase at very low 

level of biomass (MSY =
4

kB∞
). 

2.  Application/Fitting to Data 
It is desirable to use method of fitting 

this model to the observed data, which 
makes the most effective use of the obser-
vations, resulting conclusions of useful 
advice and on the contrary avoiding of 
misleading guidance. 

This numerical example is freely modified 
from RICKER (1975) which illustrates the 
fitting of the Graham's method, given the 
value of B∞ and equilibrium fishing effort 
(p.312). An equilibrium conditions of a 
fishery was characterized by Y = 40 000 
tons/year, of which 30 000 tons were fish 
of vulnerable size at the beginning of the 
year. From mark-recapture experiment, the 
rate of exploitation was found to be 30 per-
cent. The catchable stock present at the 
beginning of the year was defined to be 
30 000/0.30 = 100 000 tons. As the fishery 
was in steady state conditions, this repre-

sents also the equilibrium vulnerable stock, 
BE. The rate of fishing, FE was equal to 40 
000/100 000 = 0.40, and this must also be 
the natural logistic growth rate, i.e. rate of 
recruitment plus rate of growth less rate of 
natural mortality. 

Catch per unit effort was currently 
known as 10 tons/boat-day. But, a few years 
earlier, soon after a long of no-fishing 
period, catch was 22 tons/boat-day. Con-
sidering that Y/f (catch per unit effort) is 
proportional to stock (CPUE as an index of 
relative abundance), therefore 

 
tons. Substituting this value of B∞ into Eq. 
(4) we get 

40  000  =  k  x  l0  000(
000 220

000 100 - 000 220
)  

from which k = 0.77. Yield as a function 
of biomass in the steady state condition of 
this fishery can be expressed as 

 
3.  Relation of CPUE to Fishing Effort -

SCHAEFER's Method 
So far the model of Graham may not 

directly helful. By a mathematical manipu-
lation, SCHAEFER (1954) was successfully 
modified the model in terms of directly 
useful to fishery managers and at the same 
time it could be fitted using the real data of 
catch, abundance, and number of fishing 
easily and routinely collected by the same 
managers (PITCHER & HART 1982). 

We can define the fish catch per unit 
effort at equilibrium, UE as 

 
where / is fishing effort. The unit chosen 
for expressing effort do not matter as long 
as they remain consistent. In so far as we
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can define yield as biomass times the rate of 
fishing times catchability 

YE = f q BE    . . .     (6) 

from Eq. (5) and Eq. (6) we can express that 

UE = f q B BE/f = q BE 

and can therefore express 

BE = UE/q 
i.e., stock size expressed as CPUE over catch-
ability. Sinse the relationship is true only at 
equilibrium conditions, it cannot really be 
used to predict stock size when data of CPUE 
and catchability coefficient are available. This 
equation just demonstrates the fact that 
CPUE will change at different biomass level. 
The trick recognized by SCHAEFER is to 
substitute this new value for B and divided by 
UE in Eq. (4) to get, for the SCHAEFER's 
model 

 

divided by UE

 
which can be easily expanded and rearanged to 
solve for UE, giving 

 
Eq. (7) shows the general form of a linear 

regression of CPUE as a function of fishing 
effort f, in the form of y = a + bx, where 

a   =   U     and  b   = - 
k

q
U∞.  Graphically, 

Eq. (7) can be illustrated in Figure 5 which 
describes a useful expression showing the 
relationship between CPUE and fishing 
effort. 

 

Figure 5. Catch per unit effort against effort. 
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4. Relation of Equilibrium Yield and 
Fishing Effort - SCHAEFER's 
Method 
We use the results of the regression fitting 

of CPUE and fishing effort f in the final 
stage which purport to give the fishery man-
ager exactly what be wanted, i.e. by relating 
fishing effort directly to yield. 
Since YE = UEf by definition, we can get 
the SCHAEFER's model from Eq. (7) 
as  

i.e. yield in equilibrium is a parabolic func-
tion of effort, which in general can be 
expressed by y = af — bf2. By employing 
simple basic calculus the maxima and mini-
ma of the curve can be determined : 

 
The maximum equilibrium yield or MSY 

and the optimum rate of fishing which pro-
duce the MSY simply can be obtained from 
the parabolic relationship between equili-
brium yield and equilibrium fishing effort, 
as depicted in Figure 6. 

 

Figure 6. Equilibrium yield against fishing effort. 
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5. Numerical Example of  Schaefer's 
Method 

One approach to fitting data to this 
method is by manipulating the basic data, i.e. 
usually the annual catch and effort statistics, in 
such away that the procedure becomes a 
matter of fitting a simple curve to pair of 
values derived from these data, e.g. the 
CPUE in a given year and the effort of that 
year, and the yield versus the effort of the 
same year. 

Let us take a look at the data of lemuru (oil 
sardines), Sardinella longiceps, of the Bali 
Strait as demonstrated by SUJASTANI & 
NURHAKIM (1982). 
Tabel 1. Yield in tons, fishing effort in unit of 

purse-seiner, and yield per unit effort 
of lemuru (oil sardines), Sardinella 
longiceps, in the Bali Strait. 

 

Year Yield 
(tons) 

Effort 
(unit of purse- 

seiner) 

CPUE (Y/f) 
(ton/purse- 

seiner) 

1974 6 380 17 375.3 

1975 22 900 70 327.1 
1976 35 204 126 279.4 
1977 45 506 193 235.8 
1978 27 915 228 122.4 
1979 31155 304 102.5 
1980 25 701 237 108.4 

The yield (column 2) and the fishing 
effort (column 3) for each year are known and 
modified from fisheries statistics published by 
East Java and Bali Fisheries Agencies. There 
are divided to obtain the yield per unit effort 
(column 4), considered as an index of 
population abundance present each year. 
Eq. (7) indicates the way to fit a curve to the 
lemuru data, i.e. by regressing UE(= YE/f) on 
/. The estimate of the functional regression 
of UE on / is as follows: 

UE= 400.1  -  1.06 f  
By substituting a = 400.1, and b = 1.06 
into Eq. (9) optimum fishing effort can be 
estimated as 

 
The estimation of the maximum yield can be 
carried out by putting the values of a and b 
to Eq. (10) 

 

In conclusion, from the data illustrated in 
Table 1, MSY is estimated as 37 755 
tons/year with estimation of optimal fishing 
effort of 189 units purse-seiner. The curves of 
the two relationships, i.e. CPUE vs. effort and 
Yield vs. effort can be illustrated in Figure 7. 

CONCLUDING REMARKS 

In general, the surplus production models 
require only simple data containing of one 
independent variable t (time), and four de-
pendent variables, i.e. four function of time. 
Those are the population biomass B(t) with 
typical unit in ton, the rate of fishing effort f(t) 
in boat-day /year, the rate of catch Y(t) in 
ton/year, and the catch per unit effort U(t) in 
ton/boat-day. Besides, there are three 
parameters: the natural growth rate k, the 
carrying capacity BB∞, and the catchability 
coefficient q. 

The axioms of the models consist of three 
equations: 

 
i.e. the total growth rate of population biomass 
equals its natural logistic growth rate minus the 
catch rate; 

Y = q f B     . . .     (12) 

i.e. the catch rate is directly proportional to 
the effort rate and the available biomass with 
the constant of proportionality is q (the 
catchability coefficient); 
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Figure 7.  Graham-Schaefer model of the lemuru in Bali Strait. 

A.   YE vs. Effort        B.   UE vs. Effort 
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U =   q B      . . .     (13) 

i.e. the catch per unit effort itself propor-
tional to the biomass alone. Actually, 
Eq. (12) and (13) imply that if f ≠ 0, 
then 

U =  Y/f     . . .     (14) 

SCHNUTE (1977) points out that Eq. 
(14) should be the axiom, instead of Eq. 
(13). But, Eq. (14) is meaningful only when 
f ≠ 0, while Eq. (13) is meaningful even 
when f = 0. From the Eq. (13) can be con-
cluded that the CPUE, in general, is not 
zero even if the effort itself is zero. Accord-
ingly, Eq. (13) suggests the correct inter-
pretation for U, that is to say U is potential 
CPUE, namely, this potential is actualized 
only when fishing takes place, that is, when f  
≠ 0.  

The main practical benefit of the surplus 
production models is that they require no 
demanding data, but catch and effort data 
over serial years. MSY is temptingly easy 
to calculate, in fact require no biologists 
to be employed in the fishery, and managers 
do not even have to get their feet and hands 
we in doing investigation on the actual fish 
(PITCHER & HART 1982). In contrast 
with their practical advantages as well as 
their attractive simplicity, these models 
ignore the real important biological pro-
cesses that in fact generate the biomass of 
the population. 

For this reason, the use of these unmo-
dified simple production models in the 
management of. exploited fish stock should 
be employed with great caution. 
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