Vol 21, No 1 (2017) > Mini Conference >

Nano-Channels Early Formation Investigation on Stainless Steel 316Ti after Immersion in Molten Pb-Bi

Abu Khalid Rivai 1 , Mardiyanto Panitra 1 , Annette Heinzel 2

Affiliations:

  1. Center for Science and Technology of Advanced Materials – National Nuclear Energy Agency of Indonesia BATAN, Puspiptek, Tangerang Selatan 15314, Indonesia
  2. Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

 

Abstract: Pb-Bi (lead-bismuth eutectic-LBE) is a coolant of one of main candidates for the future nuclear reactor in the world (Generation IV reactors) i.e. LFR (Lead alloy-cooled Fast Reactor), and also a spallation target material for ADS (Accelerator Driven Transmutation System). However, the development of fuel cladding and structural materials in LBE environment, especially at high temperature, is a critical issue for the deployment of LFR and ADS. This is because of the corrosive characteristic of LBE to metals as constituent materials of fuel cladding and structural of the reactors. In this study, corrosion test of a high-chromium austenitic steel i.e. SS316Ti in liquid Pb-Bi at 550ºC has been carried out for about 300 hours. The characterization using SEM-EDS (Scanning Electron Microscope-Energy Dispersive X-ray Spectroscope) showed that an iron oxide as the outer layer and a chromium oxide as the inner layer on the surface of the specimen were formed which protected the steel specimen from corrosion and dissolution attack of Pb-Bi. However, small amount of Pb-Bi could penetrate into the iron oxide layer through ultra-thin channels. Atomic Force Microscopy (AFM) was employed to investigate the phenomena of the channels formation. The results of the nano-scale investigation showed clearly the formation of the channels.
Keywords: Nano-channel, Pb-Bi, corrosion, SS316Ti, AFM
Published at: Vol 21, No 1 (2017) pages: 13-18
DOI:

Access Counter: 467 views, 337 PDF downloads, .

Full PDF Download

References:

U.S. DOE, A Technology Roadmap for Generation IV Nuclear Energy Systems, U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, Washington, D.C., 2002.

International Energy Agency (IAEA), IAEATECDOC 1348, Vienna, Austria, 2003, p.232.

S. Meigo, J. Nucl Mater 450/1–3 (2014) 8.

A.K. Rivai, Z. Su’ud, F. Aziz, J. Indonesian Physics Contribution – KFI 13/4 (2002) 214.

A.K. Rivai, M. Takahashi, J. Power Energ. Systems 1/2 (2007) 134.

A.K. Rivai, M. Takahashi, Prog. Nucle Energy 50 (2008) 560.

A.K. Rivai, M. Takahashi, J. Nucl Mater 398 (2010) 146.

A.K. Rivai, S. Saito, M. Tezuka, C. Kato, K. Kikuchi, J. Nucl Mater. 431 (2012) 97.

K. Kikuchi, A.K. Rivai, S. Saito, A. M. Bolind, A. Kogure, J. Nucl Mater. 431 (2012) 120.

A. Weisenburger, C. Schroer, A. Jianu, A. Heinzel, J. Konys, et al., J. Nucl. Mater. 415 (2011) 260.

C. Schroer, O. Wedemeyer, J. Novotny, A. Skrypnik, J. Konys, J. Nucl. Mater. 418/1–3 (2011) 8.

A.K. Rivai, A. Heinzel, F. Lang, Proceeding of Symposium and Scientific Presentation – Basic Research of Nuclear Science and Technology (Seminar PPI PTAPB-BATAN, in Indonesia) 2012, p. 57.

Y. Kurata, J. Nucl. Mater. 448/1–3 (2014) 239.

M. Roya, L. Martinelli, K. Ginestar, Jérôme Favergeon, Gérard Moulin, J. Nucl. Mater. 468 (2016) 153.

J. Liu, Z. Jiang, S. Tian, Q. Huang, Y. Liu, J. Nucl. Mater. 468 (2016) 299.

V. Tsisar, C. Schroer, O. Wedemeyer, A. Skrypnik, J. Konys, J. Nucl. Mater. 468 (2016) 305.

A.J. Magielsen, M. Jong, T. Bakker, N.V. Luzginova, R.K. Mutnuru, D.J. Ketema, A.V. Fedorov, J. Nucl. Mater. 415/3 (2011) 311.

E. Yamaki, K. Ginestar, L. Martinelli, Corrosion Sci. 53 (2011) 3075.

L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Delpech, G. Santarini, et al., Corrosion Sci. 50 (2008) 2523.

V. Engelko, G. Muellerd, A. Rusanov, V. Markov, K. Tkachenko, A. Weisenburger, et al., J. Nuclear Mater. 415/3 (2011) 270.

Y. Kurata, H. Yokota, T. Suzuki, J. Nucl. Mater. 424/1–3 (2012) 237.