Free
Published Online: 29 March 2021
AIP Conference Proceedings 2346, 030003 (2021); https://doi.org/10.1063/5.0047834
Technetium-99m (99mTc) plays a major role in diagnostic nuclear medicine and has not yet been replaced with any other radionuclides. The 99mTc is a decay product of molybdenum-99 (99Mo) and it is available through a 99Mo/99mTc generator. The 99Mo can be produced either from the fission reaction of uranium-235 or from neutron-irradiated of natural/enriched molybdenum-98. The non-fission 99Mo/99mTc generator has a low specific activity of 99Mo. This limitation, however, can be overcome by the use of high-capacity adsorbents for 99Mo. This review is focused on the current progress and future challenges in the development of high-capacity adsorbent materials for non-fission molybdenum-99 (99Mo) in the application of 99Mo/99mTc generator. We briefly summarized some materials as well as nanomaterials that show high adsorption capacity for non-fission 99Mo. We also highlighted several synthesis methods, including the green synthesis method using plant extracts which can be potentially used to obtain high-capacity adsorbent materials.
  1. 1. L. F. Metello, J. Med. Imaging Radiat. Sci., 46 3 (2015) 256. https://doi.org/10.1016/j.jmir.2015.07.003, Google ScholarCrossref
  2. 2. B. Costa, D. Ilem-özdemir, and R. Santos-oliveira, J. Coord. Chem., 26 (2019) 1. Google Scholar
  3. 3. V. S. Le, Sci. and Tech. Nucl. Inst., 2014 (2014) 1. Google Scholar
  4. 4. W.C. Eckelman, A.G. Jones, A. Duatti, et al., Drug Discov. Today, 18 (2013) 984. https://doi.org/10.1016/j.drudis.2013.06.008, Google ScholarCrossref
  5. 5. V V.S. Le, Z. Do, M. Le, et al., Molecules, 19 6 (2014) 7714. https://doi.org/10.3390/molecules19067714, Google ScholarCrossref
  6. 6. A. Duatti, Technetium-99m Radiopharmaceuticals : Status and Trends IAEA, no. 1, IAEA, 2009. Google Scholar
  7. 7. Anonymous, The Supply of Medical Radioisotopes 2017 Medical Isotope Supply Review: 99Mo/99mTc Market Demand and Production Capacity Projection 2017-2022. (accessed May 10, 2020). Google Scholar
  8. 8. J. Welsh, C. I. Bigles, and A. Valderrabano, J. Radioanal. Nucl. Chem., 305 (2015) 9. https://doi.org/10.1007/s10967-015-4090-9, Google ScholarCrossref
  9. 9. A. Boschi and L. Uccelli, Appl. Sci. 9 (2019) 2526. https://doi.org/10.3390/app9122526, Google ScholarCrossref
  10. 10. R. Chakravarty and A. Dash, J. Radioanal. Nucl. Chem., 299 1 (2014) 741. https://doi.org/10.1007/s10967-013-2823-1, Google ScholarCrossref
  11. 11. Marlina, Sriyono, E. Lestari, et al., J. Kim. and Kemasan, 38 2 (2016) 93. https://doi.org/10.24817/jkk.v38i2.2703, Google ScholarCrossref
  12. 12. National Academies of Sciences Engineering and Medicine, “Molybdenum-99 for Medical Imaging,” 2016. Google Scholar
  13. 13. Anonymous, “Introducing the RadioGenix System (Technetium Tc-99m Generator).” https://www.northstarnm.com/products/northstar-solutions-radiogenix-system/ (accessed May 10, 2020). Google Scholar
  14. 14. Anonimous, NorthStar’s Non-uranium Based Manufacturing Process. https://www.northstarnm.com/products/northstar-solutions-mo-99-production/(accessed May 10, 2020). Google Scholar
  15. 15. P.W. Moore, M.E. Shying, J.M. Sodeau, et al., Int. J. Radiat. Appl. Instrumentation. Part, 38 1 (1987) 25. https://doi.org/10.1016/0883-2889(87)90231-0, Google ScholarCrossref
  16. 16. V. S. Le, IAEA Co-Ordinated Research Programme Of The Alternative Technologies For 99mTc Generators (CRP 1990-1994), 2014. Google Scholar
  17. 17. P. Saraswathy, S.K. Sarkar, G.Arjun, et al., Radiochim. Acta, 92 4–6 (2004) 259. https://doi.org/10.1524/ract.92.4.259.35585, Google ScholarCrossref
  18. 18. F. Monroy-Guzman, L.V. Díaz-Archundia, and S. Hernández-Cortés, J. Braz. Chem. Soc., 19 3 (2008) 380. https://doi.org/10.1590/S0103-50532008000300003, Google ScholarCrossref
  19. 19. M.A. El-Absy, M. Amin, M.A. El-Amir, et al., Radiochemistry, 58 4 (2016) 415. https://doi.org/10.1134/S1066362216040111, Google ScholarCrossref
  20. 20. A. Mushtaq, M.S. Mansoor, H.Karim, et al., J. Radioanal. Nucl. Chem., 147 2 (1991) 257. https://doi.org/10.1007/BF02040373, Google ScholarCrossref
  21. 21. Q. Qazi and A. Mushtaq, Radiochim. Acta, 99 (2011) 231. https://doi.org/10.1524/ract.2011.1817, Google ScholarCrossref
  22. 22. M. Tanase, K. Tatenuma, K. Ishikawa, et al., Appl. Radiat. Isot., 48 5 (1997) 5. https://doi.org/10.1016/S0969-8043(96)00320-X, Google ScholarCrossref
  23. 23. J. Gomez and F. Correa, J. Radioanal. Nucl. Chem., 254 3 (2002) 625. https://doi.org/10.1023/A:1021623012496, Google ScholarCrossref
  24. 24. H. Salehi, E. Mollarazi, H. Abbasi, et al., J.Phys. Theor. Chem. IAU Iran, 4 44 (2008) 245. Google Scholar
  25. 25. J. Serrano, V. Bertin, and S. Bulbulian, Langmuir, 16 7 (2000) 3355. Google ScholarCrossref
  26. 26. M. Amin, M. El-Amir, H. Ramadan, et al., J. Radioanal. Nucl. Chem., 5 (2018) 1. Google Scholar
  27. 27. I. Saptiama, E. Lestari, E. Sarmini, et al., Atom Ind. J., 42 3 (2016) 115. https://doi.org/10.17146/aij.2016.531, Google ScholarCrossref
  28. 28. I. Saptiama, Marlina, E. Sarmini, et al., Atom Ind. J., 41 2 (2015) 103. https://doi.org/10.17146/aij.2015.384, Google ScholarCrossref
  29. 29. M. Munir, E. Lestari, E. Sarmini, et al., Ganendra, 20 1 (2017) 1. https://doi.org/10.17146/gnd.2017.20.1.3038, Google ScholarCrossref
  30. 30. J. Lee. H.S Han, U.J. Park, et al., Adsorbents for Radioisotopes, Preparation Method Thereof, And Radioisotope Generators Using The Same, US Patent 8,758,714 B2 (2014) Google Scholar
  31. 31. S. Hassan, Preparation of Chitosan-Based Microporous Composite Material And Its Applications, US Patent 8,911,695 B2 (2015). Google Scholar
  32. 32. A. Dash and R. Chakravarty, RSC Adv., 4 (2014) 42779. https://doi.org/10.1039/C4RA07218A, Google ScholarCrossref
  33. 33. R. Chakravarty, R. Shukla, R. Ram, et al., Chromatographia, 72 9–10 (2010) 875. https://doi.org/10.1365/s10337-010-1754-z, Google ScholarCrossref
  34. 34. R. Chakravarty, R. Ram, A. Dash, et al., Nucl. Med. Biol., 39 7 (2012) 916. https://doi.org/10.1016/j.nucmedbio.2012.03.010, Google ScholarCrossref
  35. 35. Marlina, E. Sarmini, Herlina, et al., Atom Ind. J., 43 1 (2017) 1. https://doi.org/10.17146/aij.2017.587, Google ScholarCrossref
  36. 36. Marlina et al., Atom Ind. J., 46 2 (2020) 91. https://doi.org/10.17146/aij.2020.914, Google ScholarCrossref
  37. 37. R. Chakravarty, R. Ram, and A. Dash, Separation Sci. and Tech., 49 (2014) 1825. https://doi.org/10.1080/01496395.2014.905596, Google ScholarCrossref
  38. 38. R. Chakravarty, R. Ram, R.Mishra et al., Ind. Eng. Chem. Res., 52 33 (2013) 11673. https://doi.org/10.1021/ie401042n, Google ScholarCrossref
  39. 39. Kadarisman et al., Atom Ind. J., 44 1 (2018) 17. https://doi.org/10.17146/aij.2018.849, Google ScholarCrossref
  40. 40. I. Saptiama, Y.V. Kaneti, Y. Suzuki, et al., Bull. Chem. Soc. Jpn., 90 10 (2017) 1174. https://doi.org/10.1246/bcsj.20170184, Google ScholarCrossref
  41. 41. I. Saptiama et al., Small, 14 21 (2018) 1. https://doi.org/10.1002/smll.201800474, Google ScholarCrossref
  42. 42. I. Saptiama, V. Kaneti, B. Yuliarto, et al., Chem. Eur. J. 25 (2019) 1. https://doi.org/10.1002/chem.201900177, Google ScholarCrossref
  43. 43. M. Munir, Sriyono, Abidin, et al., J. Radioanal. Nucl. Chem., (2020). Google Scholar
  44. 44. C.C. Guedes-Silva, T.D.S. Ferreira, F.M.S. Carvalho, et al., Mater. Res., 19 4 (2016) 791. https://doi.org/10.1590/1980-5373-MR-2015-0560, Google ScholarCrossref
  45. 45. R. Feng, X. Hu, X. Yan, et al., Microporous Mesoporous Mater., 241 (2017) 89. https://doi.org/10.1016/j.micromeso.2016.11.035, Google ScholarCrossref
  46. 46. S. Siahpoosh, E. Salahi, F. Hessari, et al., Bull. la Société R. des Sci. Liège, 85 (2016) 912. Google Scholar
  47. 47. S. Faramawy, M. El-Shall, M.A. El Wahed, et al., J. Am. Sci., 10 9 (2014) 139. Google Scholar
  48. 48. N. Xu, Z. Liu, Y. Dong, et al., CrystEngComm., 42 13 (2016) 2445. Google Scholar
  49. 49. S. Ghosh, R. Dalapati, and M. K. Naskar, J. Asian Ceram. Soc., 2 4 (2014) 380. https://doi.org/10.1016/j.jascer.2014.08.002, Google ScholarCrossref
  50. 50. K. Zhang, C. Li, J. Yu, et al., Chinese J. Chem. Eng., 25 1 (2017) 137. https://doi.org/10.1016/j.cjche.2016.07.007, Google ScholarCrossref
  51. 51. Y. Ge, Z. Jia, C. Gao, et al., Russ. J. Phys. Chem. A, 88 10 (2014) 1650. https://doi.org/10.1134/S0036024414100355, Google ScholarCrossref
  52. 52. C. Kim, Y. Kim, P. Kim, et al., Korean J. Chem. Eng., 20 6 (2003) 1142. https://doi.org/10.1007/BF02706951, Google ScholarCrossref
  53. 53. A.A. Taromi and S. Kaliaguine, Microporous Mesoporous Mater., 248 (2017) 179. https://doi.org/10.1016/j.micromeso.2017.04.040, Google ScholarCrossref
  54. 54. K. Zhang, C. Li, J. Yu, et al., Chinese J. Chem. Eng., 25 1 (2017) 137. https://doi.org/10.1016/j.cjche.2016.07.007, Google ScholarCrossref
  55. 55. B. Xu, T. Xiao, Z. Yan, et al., Microporous Mesoporous Mater., 91 1–3 (2006) 293. https://doi.org/10.1016/j.micromeso.2005.12.007, Google ScholarCrossref
  56. 56. R. Zhao, F. Guo, Y. Hu, and H. Zhao, Microporous Mesoporous Mater., 93 1–3 (2006) 212. https://doi.org/10.1016/j.micromeso.2006.02.024, Google ScholarCrossref
  57. 57. Y.S. Wu, J. Ma, F. Hu, et al., J. Mater. Sci. Technol., 28 6 (2012) 572. https://doi.org/10.1016/S1005-0302(12)60100-5, Google ScholarCrossref
  58. 58. V. Mishra, R. Sharma, and N. D. Jasuja, Int. J. Green Herb. Chem., 3 1 (2014) 81. Google Scholar
  59. 59. H.N.Ğ. Lu, A.A. Güngör, and S. İ. Nce, Int. J. Inn. Res. and Rev., 1 1 (2017) 6. Google Scholar
  60. 60. J. Singh, T. Dutta, K.H. Kim, et al., J. Nanobiotechnology, (2018) 1. Google Scholar
  61. 61. A. Gour and N.K. Jain, Artif. Cells, Nanomedicine, Biotechnol., 47 1 (2019) 844. Google Scholar
  62. 62. L. Ms, S. Abbas, F. Kormin, and M. Mk, Asian J. Pharm. Clin. Res., 12 7 (2019) 75. Google Scholar
  63. 63. J. Huang, G. Zhan., B. Zheng, et al., Ind. Eng. Chem. Res., (2011) 9095. https://doi.org/10.1021/ie200858y, Google ScholarCrossref
  64. 64. S. Jain and M. S. Mehata, Sci. Rep., (2017) 1. Google Scholar
  65. 65. N. Ain and R. Nor, Ceram. Int., 39 (2013) S545. https://doi.org/10.1016/j.ceramint.2012.10.132, Google ScholarCrossref
  66. 66. P. Elia, R. Zach, S. Hazan, et al., Int. J. Nanomed., (2014) 4007. Google Scholar
  67. 67. Y. Yulizar, T. Utari, H. A. Ariyanta, et al., Hind. J. Nanomat., 2017 (2017) 1. https://doi.org/10.1155/2017/3079636, Google ScholarCrossref
  68. 68. Foliatini and Nurdiani, Orient. J. Chem., 35 4 (2019) 1453. https://doi.org/10.13005/ojc/350429, Google ScholarCrossref
  69. 69. R.A. Raj, M.S. Alsalhi, and S. Devanesan, Materials, 10 (2017) 1. Google Scholar
  70. 70. N. Sulaiman and Y. Yulizar, Mat. Sci. Forum, 917 (2018) 167. https://doi.org/10.4028/www.scientific.net/MSF.917.167, Google ScholarCrossref
  71. 71. Y. Yulizar, D.O.B. Apriandanu, and A. Prasetiyo, Compos. Commun., 16 (2019) 50. https://doi.org/10.1016/j.coco.2019.08.006, Google ScholarCrossref
  72. 72. P. Sutradhar, N. Debnath, and M. Saha, Adv. Manuf., 1 4 (2013) 357. https://doi.org/10.1007/s40436-013-0043-0, Google ScholarCrossref
  73. 73. Á.B. Sifontes, B. Gutierrez, A. Monaco, et al., Biotechnol. Reports, 4 1 (2014) 21. https://doi.org/10.1016/j.btre.2014.07.001, Google ScholarCrossref
  74. 74. M.A. Ansari, H.M. Khan, M.A. Alzohairy, et al., World J. Microbiol. Biotechnol., 31 1 (2015) 153. https://doi.org/10.1007/s11274-014-1757-2, Google ScholarCrossref
  75. 75. M. Nasrollahzadeh, Z. Issaabadi, and S. M. Sajadi, J. Mater. Sci. Mater. Electron., 30 4 (2019) 3847. https://doi.org/10.1007/s10854-019-00668-8, Google ScholarCrossref
  76. 76. D. Sarkar, S. Adak, and N.K. Mitra, Compos. Part A Appl. Sci. Manuf., 38 1 (2007) 124. https://doi.org/10.1016/j.compositesa.2006.01.005, Google ScholarCrossref
  77. 77. H.K. Farag, M.Al Zoubi, and F. Endres, J. Mater. Sci., 44 1 (2009) 122. https://doi.org/10.1007/s10853-008-3107-y, Google ScholarCrossref
  78. 78. S.M. Morris, J.A. Horton, and M. Jaroniec, Microporous Mesoporous Mater., 128 1–3 (2009) 180. https://doi.org/10.1016/j.micromeso.2009.08.018, Google ScholarCrossref
  79. 79. K. Tahmasebi and M. H. Paydar, J. Alloys Compd., 509, no. 4 (2011) 1192. https://doi.org/10.1016/j.jallcom.2010.09.176, Google ScholarCrossref
  80. 80. M. Ebrahimi-Basabi, J. Javadpour, H. Rezaie, et al., Adv. Appl. Ceram., 107, no. 6 (2008) 318. https://doi.org/10.1179/174367508X289433, Google ScholarCrossref
  1. © 2021 Author(s). Published by AIP Publishing.